[1] |
Wu X, Ruhsam M, Wen Y, Thomas PI, Worth JRP, et al. 2020. The last primary forests of the Tertiary relict Glyptostrobus pensilis contain the highest genetic diversity. Forestry 93:359−75 doi: 10.1093/forestry/cpz063 |
[2] |
Ellegren H, Galtier N. 2016. Determinants of genetic diversity. Nature Reviews Genetics 17:422−33 doi: 10.1038/nrg.2016.58 |
[3] |
Cruzan MB. 2001. Population size and fragmentation thresholds for the maintenance of genetic diversity in the herbaceous endemic Scutellaria montana (lamiaceae). Evolution 55:1569−80 doi: 10.1111/j.0014-3820.2001.tb00676.x |
[4] |
Zhou S, Zhou C, Pannell JR. 2010. Genetic load, inbreeding depression and heterosis in an age-structured metapopulation. Journal of Evolutionary Biology 23:2324−32 doi: 10.1111/j.1420-9101,2010.02091.x |
[5] |
Pucholt P, Hallingbäck HR, Berlin S. 2017. Allelic incompatibility can explain female biased sex ratios in dioecious plants. BMC Genomics 18:251 doi: 10.1186/s12864-017-3634-5 |
[6] |
Glémin S, Bazin E, Charlesworth D. 2006. Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proceedings of the Royal Society B 273:3011−19 doi: 10.1098/rspb.2006.3657 |
[7] |
Somanathan H, Borges RM. 2000. Influence of exploitation on population structure, spatial distribution and reproductive success of dioecious species in a fragmented cloud forest in India. Biological Conservation 94:243−56 doi: 10.1016/s0006-3207(99)00170-6 |
[8] |
Iszkuło G, Jasińska AK, Giertych MJ, Boratyński A. 2009. Do secondary sexual dimorphism and female intolerance to drought influence the sex ratio and extinction risk of Taxus baccata? Plant Ecology 200:229−40 doi: 10.1007/s11258-008-9447-5 |
[9] |
Aguilar R, Ashworth L, Galetto L, Aizen MA. 2006. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecology Letters 9:968−80 doi: 10.1111/j.1461-0248.2006.00927.x |
[10] |
Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, et al. 2002. Development and mapping of SSR markers for maize. Plant Molecular Biology 48:463−81 doi: 10.1023/A:1014868625533 |
[11] |
Neophytou C, van Loo M, Hasenauer H. 2020. Genetic diversity in introduced Douglas-fir and its natural regeneration in Central Europe. Forestry 93:535−44 doi: 10.1093/forestry/cpz055 |
[12] |
Han X, Zhang J, Han S, Chong SL, Meng G, et al. 2022. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies. Plant Communications 3:100410 doi: 10.1016/j.xplc.2022.100410 |
[13] |
Feng Y, Li Y, Qi M, Zhou P, Zhou Q, et al. 2022. Genetic diversity analysis of Phoebe bournei representative populationin Fujian Province based on SSR markers. Journal of Nanjing Forestry University (Natural Science Edition) 46(4):102−8 (in Chinese) doi: 10.12302/j.issn.1000-2006.202111016 |
[14] |
Liu D. 2019. Genetic diversity of germplasm resources revealed by SSR in Phoebe bournei. Thesis. Fujian Agriculture and Forestry University, China. pp. 33−34 |
[15] |
Zhou Q, Zhou PY, Zou WT, Li YG. 2021. EST-SSR marker development based on transcriptome sequencing and genetic analyses of Phoebe bournei (Lauraceae). Molecular Biology Reports 48:2201−8 doi: 10.1007/s11033-021-06228-w |
[16] |
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4:535−38 doi: 10.1111/j.1471-8286.2004.00684.x |
[17] |
Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537−39 doi: 10.1093/bioinformatics/bts460 |
[18] |
Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16:1099−106 doi: 10.1111/j.1365-294X.2007.03089.x |
[19] |
Kalinowski ST. 2005. HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5:187−89 doi: 10.1111/j.1471-8286.2004.00845.x |
[20] |
Goudet J. 1995. FSTAT (Version 1.2): a computer program to calculate f-statistics. Journal of Heredity 86:485−86 doi: 10.1093/oxfordjournals.jhered.a111627 |
[21] |
Excoffier L, Laval G, Schneider S. 2007. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1:47−50 doi: 10.1177/117693430500100003 |
[22] |
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945−59 doi: 10.1093/genetics/155.2.945 |
[23] |
Li YL, Liu JX. 2018. StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources 18:176−177 doi: 10.1111/1755-0998.12719 |
[24] |
Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801−6 doi: 10.1093/bioinformatics/btm233 |
[25] |
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, et al. 2002. Genetic structure of human populations. Science 298:2381−85 doi: 10.1126/science.1078311 |
[26] |
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology & Evolution 8:1596−99 doi: 10.1093/molbev/msm092 |
[27] |
Wang S, Liu Y, Ma L, Liu H, Tang Y, et al. 2014. Isolation and characterization of microsatellite markers and analysis of genetic diversity in Chinese jujube (Ziziphus jujuba Mill). PLoS ONE 9:e99842 doi: 10.1371/journal.pone.0099842 |
[28] |
Reed DH, Frankham R. 2003. Correlation between fitness and genetic diversity. Conservation Biology 17:230−37 doi: 10.1046/j.1523-1739.2003.01236.x |
[29] |
Zhou Q, Mu K, Ni Z, Liu X, Li Y, et al. 2020. Analysis of genetic diversity of ancient Ginkgo populations using SSR markers. Industrial Crops and Products 145:111942 doi: 10.1016/j.indcrop.2019.111942 |
[30] |
Ye XZ, Wen GW, Zhang MZ, Liu YP, Fan HH, et al. 2021. Genetic diversity and genetic structure of a rare and endangered species Semiliquidambar cathayensis Hung T. Chang. Plant Science Journal 39:415−23 doi: 10.11913/PSJ.2095-0837.2021.40415 |
[31] |
Frankham R, Ballou JD, Briscoe DA, Mcinnes KH. 2002. Introduction to conservation genetics. Cambridge: Cambridge University Press. pp. 2–9. doi: 10.1017/cbo9780511808999 |
[32] |
Wang R, Compton SG, Chen XY. 2011. Fragmentation can increase spatial genetic structure without decreasing pollen-mediated gene flow in a wind-pollinated tree. Molecular Ecology 20:4421−32 doi: 10.1111/j.1365-294X.2011.05293.x |
[33] |
Zhou CC, Xia SQ, Wen Q, Song Y, Jia QQ, et al. 2023. Genetic structure of an endangered species Ormosia henryi in southern China, and implications for conservation. BMC Plant Biology 23:220 doi: 10.1186/s12870-023-04231-w |
[34] |
Luo Q, Li F, Yu L, Wang L, Zhou Z. 2021. Genetic diversity of natural populations of Taxus mairei. Conservation Genetics 23:63−74 doi: 10.1007/s10592-021-01403-9 |
[35] |
Hirao AS, Kudo G. 2004. Landscape genetics of alpine-snowbed plants: comparisons along geographic and snowmelt gradients. Heredity 93:290−98 doi: 10.1038/sj.hdy.6800503 |
[36] |
Ortego J, Riordan EC, Gugger PF, Sork VL. 2012. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern californian oak. Molecular Ecology 21:3210−23 doi: 10.1111/j.1365-294X.2012.05591.x |
[37] |
Bao W, Wuyun T, Du H, Li T, Liu H, et al. 2018. Genetic diversity and population structure of Amygdalus mira in the tibet plateau in China based on SSR markers. Scientia Silvae Sinicae 54:30−41 (in Chinese) doi: 10.11707/j.1001-7488.20180204 |