[1]

Zhao C, Wang P, Si T, Hsu CC, Wang L, et al. 2017. MAP Kinase cascades regulate the cold response by modulating ICE1 protein stability. Developmental Cell 43:618−629.e5

doi: 10.1016/j.devcel.2017.09.024
[2]

Li H, Ding Y, Shi Y, Zhang X, Zhang S, et al. 2017. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Developmental Cell 43:630−642.e4

doi: 10.1016/j.devcel.2017.09.025
[3]

Han D, Zhang Z, Ding H, Wang Y, Liu W, et al. 2018. Molecular cloning and functional analysis of MbWRKY3 involved in improved drought tolerance in transformed tobacco. Journal of Plant Interactions 13:329−37

doi: 10.1080/17429145.2018.1478994
[4]

Bhatt D, Negi M, Sharma P, Saxena SC, Dobriyal AK, et al. 2011. Responses to drought induced oxidative stress in five finger millet varieties differing in their geographical distribution. Physiology and Molecular Biology of Plants 17:347−53

doi: 10.1007/s12298-011-0084-4
[5]

Zhao Q, Xiang X, Liu D, Yang A, Wang Y. 2018. Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Frontiers in Plant Science 9:381

doi: 10.3389/fpls.2018.00381
[6]

Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, et al. 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes and Development 17:1043−54

doi: 10.1101/gad.1077503
[7]

Shan W, Kuang JF, Lu WJ, Chen JY. 2014. Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1. Plant, Cell & Environment 37:2116−27

doi: 10.1111/pce.12303
[8]

Zhou J, Li F, Wang JL, Ma Y, Chong K, et al. 2009. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis. Journal of Plant Physiology 166:1296−306

doi: 10.1016/j.jplph.2009.02.007
[9]

Feng X, Zhao Q, Zhao L, Qiao Y, Xie X, et al. 2012. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biology 12:22

doi: 10.1186/1471-2229-12-22
[10]

Yang J, Guo X, Mei Q, Qiu L, Chen P, et al. 2023. MdbHLH4 negatively regulates apple cold tolerance by inhibiting MdCBF1/3 expression and promoting MdCAX3L-2 expression. Plant Physiology 191:789−806

doi: 10.1093/plphys/kiac512
[11]

An JP, Xu RR, Liu X, Su L, Yang K, et al. 2022. Abscisic acid insensitive 4 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple. Journal of Experimental Botany 73:980−97

doi: 10.1093/jxb/erab433
[12]

Wang S, Zhang Z, Li LX, Wang HB, Zhou H, et al. 2022. Apple MdMYB306-like inhibits anthocyanin synthesis by directly interacting with MdMYB17 and MdbHLH33. The Plant Journal 110:1021−34

doi: 10.1111/tpj.15720
[13]

Han D, Yang G, Xu K, Shao Q, Yu Z, et al. 2013. Overexpression of a Malus xiaojinensis Nas1 gene influences flower development and tolerance to iron stress in transgenic tobacco. Plant Molecular Biology Reporter 31:802−09

doi: 10.1007/s11105-012-0551-2
[14]

Liang X, Luo G, Li W, Yao A, Liu W, et al. 2022. Overexpression of a Malus baccata CBF transcription factor gene, MbCBF1, increases cold and salinity tolerance in Arabidopsis thaliana. Plant Physiology and Biochemistry 192:230−42

doi: 10.1016/j.plaphy.2022.10.012
[15]

Han D, Wang Y, Zhang L, Ma L, Zhang X, et al. 2012. Isolation and functional characterization of MxCS1: a gene encoding a citrate synthase in Malus xiaojinensis. Biologia Plantarum 56:50−56

doi: 10.1007/s10535-012-0015-4
[16]

Han D, Wang L, Wang Y, Yang G, Gao C, et al. 2013. Overexpression of Malus xiaojinensis CS1 gene in tobacco affects plant development and increases iron stress tolerance. Scientia Horticulturae 150:65−72

doi: 10.1016/j.scienta.2012.10.004
[17]

Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, et al. 2017. The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 18:225

doi: 10.1186/s12864-017-3606-9
[18]

Zhu L, Su J, Jin Y, Zhao H, Tian X, et al. 2021. Genome-wide identification, molecular evolution, and expression divergence of the hexokinase gene family in apple. Journal of Integrative Agriculture 20:2112−25

doi: 10.1016/S2095-3119(20)63562-6
[19]

Ren C, Luo G, Li X, Yao A, Liu W, et al. 2023. MxFRO4 confers iron and salt tolerance through up-regulating antioxidant capacity associated with the ROS scavenging. Journal of Plant Physiology 285:154001

doi: 10.1016/j.jplph.2023.154001
[20]

Zhang L, Ma B, Wang C, Chen X, Ruan YL, et al. 2022. MdWRKY126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase (MdMDH5). Plant Physiology 188:2059−72

doi: 10.1093/plphys/kiac023
[21]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43

doi: 10.1046/j.1365-313x.1998.00343.x
[22]

Han D, Shi Y, Yu Z, Liu W, Lv B, et al. 2015. Isolation and functional analysis of MdCS1: a gene encoding a citrate synthase in Malus domestica (L.) Borkh. Plant Growth Regulation 75:209−18

doi: 10.1007/s10725-014-9945-5
[23]

Li Y, Zhong J, Huang P, Shao B, Li W, et al. 2022. Overexpression of MxFRO6, a FRO gene from Malus xiaojinensis, increases iron and salt tolerance in Arabidopsis thaliana. In Vitro Cellular & Developmental Biology - Plant 58:189−99

doi: 10.1007/s11627-022-10256-x
[24]

Xu W, Jiao Y, Li R, Zhang N, Xiao D, et al. 2014. Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis. PLoS One 9:e102303

doi: 10.1371/journal.pone.0102303
[25]

Park S, Shi A, Mou B. 2020. Genome-wide identification and expression analysis of the CBF/DREB1 gene family in lettuce. Scientific Reports 10:5733

doi: 10.1038/s41598-020-62458-1
[26]

Liu L, Duan L, Zhang J, Zhang Z, Mi G, et al. 2010. Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance. Scientia Horticulturae 124:29−33

doi: 10.1016/j.scienta.2009.11.018
[27]

Li J, Wang L, Zhu W, Wang N, Xin H, et al. 2014. Characterization of two VvICE1 genes isolated from 'Muscat Hamburg' grapevine and their effect on the tolerance to abiotic stresses. Scientia Horticulturae 165:266−73

doi: 10.1016/j.scienta.2013.11.002
[28]

Manzoor MA, Xu Y, lv Z, Xu J, Wang Y, et al. 2023. Fruit crop abiotic stress management: a comprehensive review of plant hormones mediated responses. Fruit Research 3:30

doi: 10.48130/FruRes-2023-0030
[29]

Lobato-Gómez M, Hewitt S, Capell T, Christou P, Dhingra A. et al. 2021. Transgenic and genome-edited fruits: background, constraints, benefits, and commercial opportunities. Horticulture Research 8:166

doi: 10.1038/s41438-021-00601-3
[30]

Anjanappa RB, Gruissem W. 2021. Current progress and challenges in crop genetic transformation. Journal of Plant Physiology 261:153411

doi: 10.1016/j.jplph.2021.153411
[31]

Lee JH, Jung JH, Park CM. 2017. Light inhibits COP1-mediated degradation of ICE transcription factors to induce stomatal development in Arabidopsis. The Plant Cell 29:2817−30

doi: 10.1105/tpc.17.00371
[32]

Huang X, Li K, Jin C, Zhang S. 2015. ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1. Scientific Reports 5:17620

doi: 10.1038/srep17620
[33]

Sharma N, Xin R, Kim DH, Sung S, Lange T, et al. 2016. NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis. Development 143:682−90

doi: 10.1242/dev.128595
[34]

Poirier BC, Feldman MJ, Lange BM. 2018. bHLH093/NFL and bHLH061 are required for apical meristem function in Arabidopsis thaliana. Plant Signaling & Behavior 13:e1486146

doi: 10.1080/15592324.2018.1486146
[35]

Ohashi-Ito K, Bergmann DC. 2006. Arabidopsis FAMA controls the final proliferation /differentiation switch during stomatal development. The Plant Cell 18:2493−505

doi: 10.1105/tpc.106.046136
[36]

Ding Y, Li H, Zhang X, Xie Q, Gong Z, et al. 2015. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Developmental Cell 32:278−89

doi: 10.1016/j.devcel.2014.12.023
[37]

Zhuo T, Wang X, Chen Z, Cui H, Zeng Y, et al. 2020. The Ralstonia solanacearum effector RipI induces a defence reaction by interacting with the bHLH93 transcription factor in Nicotiana benthamiana. Molecular Plant Pathology 21:999−1004

doi: 10.1111/mpp.12937
[38]

Ma H, Zou F, Li D, Wan Y, Zhang Y, et al. 2023. Transcription factor MdbHLH093 enhances powdery mildew resistance by promoting salicylic acid signaling and hydrogen peroxide accumulation. International Journal of Molecular Sciences 24:9390

doi: 10.3390/ijms24119390
[39]

Liu X, Wang Y, Ma X, Zhang H, Zhou Y, et al. 2024. MdbHLH93 confers drought tolerance by activating MdTyDC expression and promoting dopamine biosynthesis. International Journal of Biological Macromolecules 258:129003

doi: 10.1016/j.ijbiomac.2023.129003
[40]

Zhou MQ, Shen C, Wu LH, Tang KX, Lin J. 2011. CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Critical Reviews in Biotechnology 31:186−92

doi: 10.3109/07388551.2010.505910
[41]

Wan F, Pan Y, Li J, Chen X, Pan Y, et al. 2014. Heterologous expression of Arabidopsis C-repeat binding factor 3 (AtCBF3) and cold-regulated 15A (AtCOR15A) enhanced chilling tolerance in transgenic eggplant (Solanum melongena L.). Plant Cell Reports 33:1951−61

doi: 10.1007/s00299-014-1670-z
[42]

Pino MT, Skinner JS, Jeknić Z, Hayes PM, Soeldner AH, et al. 2008. Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant, Cell & Environment 31:393−406

doi: 10.1111/j.1365-3040.2008.01776.x
[43]

Walworth AE, Song G, Warner RM. 2014. Ectopic AtCBF3 expression improves freezing tolerance and promotes compact growth habit in petunia. Molecular Breeding 33:731−41

doi: 10.1007/s11032-013-9989-7
[44]

Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K. 2022. Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science 27:922−35

doi: 10.1016/j.tplants.2022.01.008
[45]

Xu W, Zhang N, Jiao Y, Li R, Xiao D, et al. 2014. The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis. Molecular Biology Reports 41:329−42

doi: 10.1007/s11033-014-3404-2
[46]

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, et al. 1998. Low temperature regulation of Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16:433−42

doi: 10.1046/j.1365-313x.1998.00310.x
[47]

Xiao H, Tattersall EAR, Siddiqua MK, Cramer G, Nassuth A. 2008. CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant, Cell & Environment 31:1−10

doi: 10.1111/j.1365-3040.2007.01741.x
[48]

Campos PS, Quartin VN, Ramalho JC, Nunes MA. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. Journal of Plant Physiology 160:283−92

doi: 10.1078/0176-1617-00833
[49]

Trovato M, Mattioli R, Costantino P. 2008. Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei 19:325−46

doi: 10.1007/s12210-008-0022-8
[50]

Yu D, Zhang L, Zhao K, Niu R, Zhai H, et al. 2017. VaERD15, a transcription factor gene associated with cold-tolerance in Chinese wild Vitis amurensis. Frontiers in Plant Science 8:297

doi: 10.3389/fpls.2017.00297
[51]

Yang YY, Zheng PF, Ren YR, Yao YX, You CX, et al. 2021. Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drought responses. Planta 253:46

doi: 10.1007/s00425-020-03528-6
[52]

Zhao Q, Fan Z, Qiu L, Che Q, Wang T, et al. 2020. MdbHLH130, an apple bHLH transcription factor, confers water stress resistance by regulating stomatal closure and ROS homeostasis in transgenic tobacco. Frontiers in Plant Science 11:543696

doi: 10.3389/fpls.2020.543696
[53]

Han D, Wang Y, Zhang Z, Pu Q, Ding H, et al. 2017. Isolation and functional analysis of MxCS3: a gene encoding a citrate synthase in Malus xiaojinensis, with functions in tolerance to iron stress and abnormal flower in transgenic Arabidopsis thaliana. Plant Growth Regulation 82:479−89

doi: 10.1007/s10725-017-0274-3
[54]

Chen M, Luo Z, Zhao X, Li S, Wu F, et al. 2022. Exogenously applied methyl jasmonate increased the resistance of postharvest pear fruit to blue mold. Fruit Research 2:11

doi: 10.48130/FruRes-2022-0011
[55]

Han D, Shi Y, Wang B, Liu W, Yu Z, et al. 2015. Isolation and preliminary functional analysis of MxCS2: a gene encoding a citrate synthase in Malus xiaojinensis. Plant Molecular Biology Reporter 33:133−42

doi: 10.1007/s11105-014-0735-z