[1] |
Caputi L, Malnoy M, Goremykin V, Nikiforova S, Martens S. 2012. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. The Plant Journal 69:1030−42 doi: 10.1111/j.1365-313X.2011.04853.x |
[2] |
Bowles D, Lim EK, Poppenberger B, Vaistij FE. 2006. Glycosyltransferases of lipophilic small molecules. Annual Review of Plant Biology 57:567−97 doi: 10.1146/annurev.arplant.57.032905.105429 |
[3] |
Jones P, Vogt T. 2001. Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164−74 doi: 10.1007/s004250000492 |
[4] |
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, et al. 2019. The UDP-glycosyltransferase (UGT) superfamily: new members, new functions, and novel paradigms. Physiological Reviews 99:1153−222 doi: 10.1152/physrev.00058.2017 |
[5] |
Ross J, Li Y, Lim EK, Bowles DJ. 2001. Higher plant glycosyltransferases. Genome Biology 2:reviews3004.1 doi: 10.1186/gb-2001-2-2-reviews3004 |
[6] |
Yonekura-Sakakibara K, Hanada K. 2011. An evolutionary view of functional diversity in family 1 glycosyltransferases. The Plant Journal 66:182−93 doi: 10.1111/j.1365-313x.2011.04493.x |
[7] |
Sun S, Dai T, Wang Z, Chou J, Chao Q, et al. 2021. Projected increases in population exposure of daily climate extremes in Eastern China by 2050. Advances in Climate Change Research |
[8] |
MacKenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, et al. 1997. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7:255−69 doi: 10.1097/00008571-199708000-00001 |
[9] |
Parra-Rojas JP, Largo-Gosens A, Carrasco T, Celiz-Balboa J, Arenas-Morales V, et al. 2019. New steps in mucilage biosynthesis revealed by analysis of the transcriptome of the UDP-rhamnose/UDP-galactose transporter 2 mutant. Journal of Experimental Botany 70:5071−88 doi: 10.1093/jxb/erz262 |
[10] |
Yonekura-Sakakibara K, Fukushima A, Nakabayashi R, Hanada K, Matsuda F, et al. 2012. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. The Plant Journal 69:154−67 doi: 10.1111/j.1365-313X.2011.04779.x |
[11] |
Lin JS, Huang XX, Li Q, Cao Y, Bao Y, et al. 2016. UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. The Plant Journal 88:26−42 doi: 10.1111/tpj.13229 |
[12] |
Rocha J, Sarkis J, Thomas A, Pitou L, Radzimanowski J, et al. 2016. Structural insights and membrane binding properties of MGD1, the major galactolipid synthase in plants. The Plant Journal 85:622−33 doi: 10.1111/tpj.13129 |
[13] |
Grubb CD, Zipp BJ, Kopycki J, Schubert M, Quint M, et al. 2014. Comparative analysis of Arabidopsis UGT74 glucosyltransferases reveals a special role of UGT74C1 in glucosinolate biosynthesis. The Plant Journal 79:92−105 doi: 10.1111/tpj.12541 |
[14] |
Sinlapadech T, Stout J, Ruegger MO, Deak M, Chapple C. 2007. The hyper-fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid: UDPG glucosyltransferase. The Plant Journal 49:655−68 doi: 10.1111/j.1365-313X.2006.02984.x |
[15] |
Wu B, Cao X, Liu H, Zhu C, Klee H, et al. 2019. UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach. Journal of Experimental Botany 70:925−36 doi: 10.1093/jxb/ery419 |
[16] |
Yin Q, Shen G, Di S, Fan C, Chang Z, et al. 2017. Genome-wide identification and functional characterization of UDP-glucosyltransferase genes involved in flavonoid biosynthesis in Glycine max. Plant and Cell Physiology 58:1558−72 doi: 10.1093/pcp/pcx081 |
[17] |
Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, et al. 2005. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proceedings of the National Academy of Sciences of the United States of America 102:15253−58 doi: 10.1073/pnas.0504279102 |
[18] |
Wang J, Ma XM, Kojima M, Sakakibara H, Hou BK. 2011. N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant and Cell Physiology 52:2200−13 doi: 10.1093/pcp/pcr152 |
[19] |
Lim EK, Bowles DJ. 2004. A class of plant glycosyltransferases involved in cellular homeostasis. The EMBO Journal 23:2915−22 doi: 10.1038/sj.emboj.7600295 |
[20] |
Gachon CMM, Langlois-Meurinne M, Saindrenan P. 2005. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends in Plant Science 10:542−49 doi: 10.1016/j.tplants.2005.09.007 |
[21] |
Ono E, Homma Y, Horikawa M, Kunikane-Doi S, Imai H, et al. 2010. Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera). The Plant Cell 22:2856−71 doi: 10.1105/tpc.110.074625 |
[22] |
Kristensen C, Morant M, Olsen CE, Ekstrøm CT, Galbraith DW, et al. 2005. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proceedings of the National Academy of Sciences of the United States of America 102:1779−84 doi: 10.1073/pnas.0409233102 |
[23] |
Lim EK, Doucet CJ, Li Y, Elias L, Worrall D, et al. 2002. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. Journal of Biological Chemistry 277:586−92 doi: 10.1074/jbc.m109287200 |
[24] |
Li D, Chen G, Ma B, Zhong C, He N. 2020. Metabolic profiling and transcriptome analysis of mulberry leaves provide insights into flavonoid biosynthesis. Journal of Agricultural and Food Chemistry 68:1494−504 doi: 10.1021/acs.jafc.9b06931 |
[25] |
Nair PC, Meech R, MacKenzie PI, McKinnon RA, Miners JO. 2015. Insights into the UDP-sugar selectivities of human UDP-glycosyltransferases (UGT): a molecular modeling perspective. Drug Metabolism Reviews 47:335−45 |
[26] |
Chen HY, Li X. 2017. Identification of a residue responsible for UDP-sugar donor selectivity of a dihydroxybenzoic acid glycosyltransferase from Arabidopsis natural accessions. The Plant Journal 89:195−203 doi: 10.1111/tpj.13271 |
[27] |
Hu Y, Walker S. 2002. Remarkable structural similarities between diverse glycosyltransferases. Chemistry & Biology 9:1287−96 doi: 10.1016/s1074-5521(02)00295-8 |
[28] |
Louveau T, Orme A, Pfalzgraf H, Stephenson MJ, Melton R, et al. 2018. Analysis of two new Arabinosyltransferases belonging to the carbohydrate-active enzyme (CAZY) glycosyl transferase Family1 provides insights into disease resistance and sugar donor specificity. The Plant Cell 30:3038−57 doi: 10.1105/tpc.18.00641 |
[29] |
Wilson AE, Tian L. 2019. Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. The Plant Journal 100:1273−88 doi: 10.1111/tpj.14514 |
[30] |
Smith J, Yang Y, Levy S, Adelusi OO, Hahn MG, et al. 2016. Functional characterization of UDP-apiose synthases from bryophytes and green algae provides insight into the appearance of apiose-containing glycans during plant evolution. Journal of Biological Chemistry 291:21434−47 doi: 10.1074/jbc.M116.749069 |
[31] |
Ramirez-Estrada K, Castillo N, Lara JA, Arró M, Boronat A, et al. 2017. Tomato UDP-glucose sterol glycosyltransferases: a family of developmental and stress regulated genes that encode cytosolic and membrane-associated forms of the enzyme. Frontiers in Plant Science 8:984 doi: 10.3389/fpls.2017.00984 |
[32] |
Rehman HM, Khan UM, Nawaz S, Saleem F, Ahmed N, et al. 2022. Genome wide analysis of Family-1 UDP glycosyltransferases in Populus trichocarpa specifies abiotic stress responsive glycosylation mechanisms. Genes 13:1640 doi: 10.3390/genes13091640 |
[33] |
Clark JW, Donoghue PCJ. 2018. Whole-genome duplication and plant macroevolution. Trends in Plant Science 23:933−45 doi: 10.1016/j.tplants.2018.07.006 |
[34] |
Li Y, Baldauf S, Lim EK, Bowles DJ. 2001. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. Journal of Biological Chemistry 276:4338−43 doi: 10.1074/jbc.M007447200 |
[35] |
Huang S, Li R, Zhang Z, Li L, Gu X, et al. 2009. The genome of the cucumber, Cucumis sativus L. Nature Genetics 41:1275−81 doi: 10.1038/ng.475 |
[36] |
Yang M, Fehl C, Lees KV, Lim EK, Offen WA, et al. 2018. Functional and informatics analysis enables glycosyltransferase activity prediction. Nature Chemical Biology 14:1109−17 doi: 10.1038/s41589-018-0154-9 |
[37] |
Tiwari P, Sangwan RS, Sangwan NS. 2016. Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and scopes. Biotechnology Advances 34:714−39 doi: 10.1016/j.biotechadv.2016.03.006 |
[38] |
Lairson LL, Henrissat B, Davies GJ, Withers SG. 2008. Glycosyltransferases: structures, functions, and mechanisms. Annual Review of Biochemistry 77:521−55 doi: 10.1146/annurev.biochem.76.061005.092322 |
[39] |
Osmani SA, Bak S, Møller BL. 2009. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70:325−47 doi: 10.1016/j.phytochem.2008.12.009 |
[40] |
Song C, Gu L, Liu J, Zhao S, Hong X, et al. 2015. Functional characterization and substrate promiscuity of UGT71 glycosyltransferases from strawberry (Fragaria × ananassa). Plant and Cell Physiology 56:2478−93 doi: 10.1093/pcp/pcv151 |
[41] |
Liu Z, Yan JP, Li DK, Luo Q, Yan Q, et al. 2015. UDP-glucosyltransferase71C5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis. Plant Physiology 167:1659−70 doi: 10.1104/pp.15.00053 |
[42] |
Dong Y, Wang C, Han X, Tang S, Liu S, et al. 2014. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochemical and Biophysical Research Communications 450:453−58 doi: 10.1016/j.bbrc.2014.05.139 |
[43] |
Su X, Shen G, Di S, Dixon RA, Pang Y. 2017. Characterization of UGT716A1 as a multi-substrate UDP: flavonoid glucosyltransferase gene in Ginkgo biloba. Frontiers in Plant Science 8:2085 doi: 10.3389/fpls.2017.02085 |
[44] |
Xiao J. 2015. Dietary flavonoid aglycones and their glycosides: which show better biological significance? Critical Reviews in Food Science and Nutrition 57:1874−905 doi: 10.1080/10408398.2015.1032400 |
[45] |
Zhao M, Jin J, Wang J, Gao T, Luo Y, et al. 2022. Eugenol functions as a signal mediating cold and drought tolerance via UGT71A59-mediated glucosylation in tea plants. The Plant Journal 109:1489−506 doi: 10.1111/tpj.15647 |
[46] |
Lim CE, Choi JN, Kim IA, Lee SA, Hwang YS, et al. 2008. Improved resistance to oxidative stress by a loss-of-function mutation in the Arabidopsis UGT71C1 gene. Molecules and Cells 25:368−75 doi: 10.1016/S1016-8478(23)17594-7 |
[47] |
Cao Y, Han Z, Zhang Z, He L, Huang C, et al. 2024. UDP-glucosyltransferase 71C4 controls the flux of phenylpropanoid metabolism to shape cotton seed development. Plant Communications 5:100938 doi: 10.1016/j.xplc.2024.100938 |
[48] |
Augustin JM, Kuzina V, Andersen SB, Bak S. 2011. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435−57 doi: 10.1016/j.phytochem.2011.01.015 |
[49] |
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 40:D1178−D1186 doi: 10.1093/nar/gkr944 |
[50] |
Mugford ST, Osbourn A. 2012. Saponin synthesis and function. In Isoprenoid Synthesis in Plants and Microorganisms, eds Bach T, Rohmer M. New York: Springer. pp. 405–24. doi: 10.1007/978-1-4614-4063-5_28 |
[51] |
Ren C, Xi Z, Xian B, Chen C, Huang X, et al. 2023. Identification and characterization of CtUGT3 as the key player of astragalin biosynthesis in Carthamus tinctorius L. Journal of Agricultural and Food Chemistry 71:16221−32 doi: 10.1021/acs.jafc.3c05117 |
[52] |
Wang X. 2009. Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Letters 583:3303−9 doi: 10.1016/j.febslet.2009.09.042 |
[53] |
Khorolragchaa A, Kim YJ, Rahimi S, Sukweenadhi J, Jang MG, et al. 2014. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer. Gene 536:186−92 doi: 10.1016/j.gene.2013.07.077 |
[54] |
Yan X, Fan Y, Wei W, Wang P, Liu Q, et al. 2014. Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Research 24:770−73 doi: 10.1038/cr.2014.28 |
[55] |
Griesser M, Vitzthum F, Fink B, Bellido ML, Raasch C, et al. 2008. Multi-substrate flavonol O-glucosyltransferases from strawberry (Fragaria × ananassa) achene and receptacle. Journal of Experimental Botany 59:2611−25 doi: 10.1093/jxb/ern117 |
[56] |
Kurze E, Wüst M, Liao J, McGraphery K, Hoffmann T, et al. 2022. Structure-function relationship of terpenoid glycosyltransferases from plants. Natural Product Reports 39:389−409 doi: 10.1039/d1np00038a |
[57] |
Behr M, Neutelings G, El Jaziri M, Baucher M. 2020. You want it sweeter: how glycosylation affects plant response to oxidative stress. Frontiers in Plant Science 11:571399 doi: 10.3389/fpls.2020.571399 |
[58] |
Okazawa A, Kusunose T, Ono E, Kim HJ, Satake H, et al. 2014. Glucosyltransferase activity of Arabidopsis UGT71C1 towards pinoresinol and lariciresinol. Plant Biotechnology 31:561−66 doi: 10.5511/plantbiotechnology.14.0910a |
[59] |
Baderschneider B, Winterhalter P. 2001. Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. Journal of Agricultural and Food Chemistry 49:2788−98 doi: 10.1021/jf010396d |
[60] |
Guo DD, Liu F, Tu YH, He BX, Gao Y, et al. 2016. Expression patterns of three UGT genes in different chemotype safflower lines and under MeJA stimulus revealed their potential role in flavonoid biosynthesis. PLoS One 11:e0158159 doi: 10.1371/journal.pone.0158159 |
[61] |
Piotrowska A, Bajguz A. 2011. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry 72:2097−112 doi: 10.1016/j.phytochem.2011.08.012 |
[62] |
Islam S, Griffiths CA, Blomstedt CK, Le TN, Gaff DF, et al. 2013. Increased biomass, seed yield and stress tolerance is conferred in Arabidopsis by a novel enzyme from the resurrection grass Sporobolus stapfianus that glycosylates the strigolactone analogue GR24. PLoS One 8:e80035 doi: 10.1371/journal.pone.0080035 |
[63] |
Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M. 2019. Intra and extracellular journey of the phytohormone salicylic acid. Frontiers in Plant Science 10:423 doi: 10.3389/fpls.2019.00423 |
[64] |
Park SW, Liu PP, Forouhar F, Vlot AC, Tong L, et al. 2009. Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. Journal of Biological Chemistry 284:7307−17 doi: 10.1074/jbc.M807968200 |
[65] |
Chen L, Wang WS, Wang T, Meng XF, Chen TT, et al. 2019. Methyl salicylate glucosylation regulates plant defense signaling and systemic acquired resistance. Plant Physiology 180:2167−81 doi: 10.1104/pp.19.00091 |
[66] |
Gershenzon J, Dudareva N. 2007. The function of terpene natural products in the natural world. Nature Chemical Biology 3:408−14 doi: 10.1038/nchembio.2007.5 |
[67] |
Bönisch F, Frotscher J, Stanitzek S, Rühl E, Wüst M, et al. 2014. A UDP-glucose: monoterpenol glucosyltransferase adds to the chemical diversity of the grapevine metabolome. Plant Physiology 165:561−81 doi: 10.1104/pp.113.232470 |
[68] |
Karlova R, Busscher J, Schempp FM, Buchhaupt M, van Dijk ADJ, et al. 2022. Detoxification of monoterpenes by a family of plant glycosyltransferases. Phytochemistry 203:113371 doi: 10.1016/j.phytochem.2022.113371 |
[69] |
Saha SK, Swaminathan P, Raghavan C, Uma L, Subramanian G. 2010. Ligninolytic and antioxidative enzymes of a marine cyanobacterium Oscillatoria willei BDU 130511 during Poly R-478 decolourization. Bioresource Technology 101:3076−84 doi: 10.1016/j.biortech.2009.12.075 |
[70] |
Kim YJ, Zhang D, Yang DC. 2015. Biosynthesis and biotechnological production of ginsenosides. Biotechnology Advances 33:717−35 doi: 10.1016/j.biotechadv.2015.03.001 |
[71] |
Liu C, Dai L, Liu Y, Dou D, Sun Y, et al. 2018. Pharmacological activities of mogrosides. Future Medicinal Chemistry 10:845−50 doi: 10.4155/fmc-2017-0255 |
[72] |
Achnine L, Huhman DV, Farag MA, Sumner LW, Blount JW, et al. 2005. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. The Plant Journal 41:875−87 doi: 10.1111/j.1365-313X.2005.02344.x |
[73] |
Bönisch F, Frotscher J, Stanitzek S, Rühl E, Wüst M, et al. 2014. Activity-based profiling of a physiologic aglycone library reveals sugar acceptor promiscuity of Family 1 UDP-glucosyltransferases from grape. Plant Physiology 166:23−39 doi: 10.1104/pp.114.242578 |
[74] |
Gómez R, Vicino P, Carrillo N, Lodeyro AF. 2019. Manipulation of oxidative stress responses as a strategy to generate stress-tolerant crops. From damage to signaling to tolerance. Critical Reviews in Biotechnology 39:693−708 doi: 10.1080/07388551.2019.1597829 |
[75] |
Montoro P, Braca A, Pizza C, De Tommasi N. 2005. Structure–antioxidant activity relationships of flavonoids isolated from different plant species. Food Chemistry 92:349−55 doi: 10.1016/j.foodchem.2004.07.028 |
[76] |
Agati G, Azzarello E, Pollastri S, Tattini M. 2012. Flavonoids as antioxidants in plants: location and functional significance. Plant Science 196:67−76 doi: 10.1016/j.plantsci.2012.07.014 |
[77] |
Chapman JM, Muhlemann JK, Gayomba SR, Muday GK. 2019. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chemical Research in Toxicology 32:370−96 doi: 10.1021/acs.chemrestox.9b00028 |
[78] |
Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I. 2007. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science 12:29−36 doi: 10.1016/j.tplants.2006.11.006 |
[79] |
Yamasaki H, Sakihama Y, Ikehara N. 1997. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiology 115:1405−12 doi: 10.1104/pp.115.4.1405 |
[80] |
Naoumkina M, Dixon RA. 2008. Subcellular localization of flavonoid natural products: a signaling function? Plant Signaling & Behavior 3:573−75 doi: 10.4161/psb.3.8.5731 |
[81] |
Brunetti C, Sebastiani F, Tattini M. 2019. Review: ABA, flavonols, and the evolvability of land plants. Plant Science 280:448−54 doi: 10.1016/j.plantsci.2018.12.010 |
[82] |
Heim KE, Tagliaferro AR, Bobilya DJ. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry 13:572−84 doi: 10.1016/s0955-2863(02)00208-5 |
[83] |
Song C, Hong X, Zhao S, Liu J, Schulenburg K, et al. 2016. Glucosylation of 4-hydroxy-2, 5-dimethyl-3(2H)-furanone, the key strawberry flavor compound in strawberry fruit. Plant Physiology 171:139−51 doi: 10.1104/pp.16.00226 |
[84] |
Hõrak H. 2021. How to achieve immune balance and harmony: glycosyltransferase UGT76B1 inactivates N-hydroxy-pipecolic acid to suppress defense responses. The Plant Cell 33:453−54 doi: 10.1093/plcell/koaa053 |
[85] |
Bhatnagar-Mathur P, Vadez V, Sharma KK. 2007. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Reports 27:411−24 doi: 10.1007/s00299-007-0474-9 |
[86] |
Sah SK, Reddy KR, Li J. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science 7:571 doi: 10.3389/fpls.2016.00571 |
[87] |
Xu ZY, Lee KH, Dong T, Jeong JC, Jin JB, et al. 2012. A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. The Plant Cell 24:2184−99 doi: 10.1105/tpc.112.095935 |
[88] |
Dietz K, Sauter A, Wichert K, Messdaghi D, Hartung W. 2000. Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. Journal of Experimental Botany 51:937−44 doi: 10.1093/jxb/51.346.937 |
[89] |
Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, et al. 2006. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109−20 doi: 10.1016/j.cell.2006.07.034 |
[90] |
Upadhyaya H, Panda SK. 2013. Abiotic stress responses in TEA [Camellia sinensis L (O) Kuntze]: an overview. Reviews in Agricultural Science 1:1−10 doi: 10.7831/ras.1.1 |
[91] |
Priest DM, Jackson RG, Ashford DA, Abrams SR, Bowles DJ. 2005. The use of abscisic acid analogues to analyse the substrate selectivity of UGT71B6, a UDP-glycosyltransferase of Arabidopsis thaliana. FEBS Letters 579:4454−58 doi: 10.1016/j.febslet.2005.06.084 |
[92] |
Hammond-Kosack KE, Jones JD. 1996. Resistance gene-dependent plant defense responses. The Plant Cell 8:1773−91 doi: 10.1105/tpc.8.10.1773 |
[93] |
Iqbal Z, Iqbal MS, Hashem A, Abd Allah EF, Ansari MI. 2021. Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Frontiers in Plant Science 12:631810 doi: 10.3389/fpls.2021.631810 |
[94] |
Bennett RS, Hutmacher RB, Davis RM. 2008. Seed transmission of Fusarium oxysporum f. sp. vasinfectum race 4 in California. The Journal of Cotton Science 12:160−64 |
[95] |
Bartholomew DM, Van Dyk DE, Lau SM C, O’Keefe DP, Rea PA, et al. 2002. Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates. Plant Physiology 130:1562−72 doi: 10.1104/pp.008334 |
[96] |
Gharabli H, Della Gala V, Welner DH. 2023. The function of UDP-glycosyltransferases in plants and their possible use in crop protection. Biotechnology Advances 67:108182 doi: 10.1016/j.biotechadv.2023.108182 |
[97] |
Shi Q, Du J, Zhu D, Li X, Li X. 2020. Metabolomic and transcriptomic analyses of anthocyanin biosynthesis mechanisms in the color mutant Ziziphus jujuba cv. Tailihong. Journal of Agricultural and Food Chemistry 68:15186−98 doi: 10.1021/acs.jafc.0c05334 |
[98] |
Gosch C, Halbwirth H, Schneider B, Hölscher D, Stich K. 2010. Cloning and heterologous expression of glycosyltransferases from Malus x domestica and Pyrus communis, which convert phloretin to phloretin 2'-O-glucoside (phloridzin). Plant Science 178:299−306 doi: 10.1016/j.plantsci.2009.12.009 |