[1] |
HanumanthaRao B, Nair RM, Nayyar H. 2016. Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Frontiers in Plant Science 7:957 doi: 10.3389/fpls.2016.00957 |
[2] |
Kaur R, Bains TS, Bindumadhava H, Nayyar H. 2015. Responses of mungbean (Vigna radiata L.) genotypes to heat stress: effects on reproductive biology, leaf function and yield traits. Scientia Horticulturae 197:527−41 doi: 10.1016/j.scienta.2015.10.015 |
[3] |
Van K, Kang Y, Han KS, Lee YH, Gwag JG, et al. 2013. Genome-wide SNP discovery in mungbean by Illumina HiSeq. Theoretical and Applied Genetics 126:2017−27 doi: 10.1007/s00122-013-2114-9 |
[4] |
Stefanović S, Pfeil BE, Palmer JD, Doyle JJ. 2009. Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Systematic Botany 34:115−28 doi: 10.1600/036364409787602221 |
[5] |
Sakai H, Naito K, Takahashi Y, Sato T, Yamamoto T, et al. 2016. The Vigna Genome Server, 'Vig GS': a genomic knowledge base of the genus Vigna based on high-quality, annotated genome sequence of the Azuki Bean, Vigna angularis (Willd.) Ohwi & Ohashi. Plant and Cell Physiology 57:e2 doi: 10.1093/pcp/pcv189 |
[6] |
Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, et al. 2014. Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communications 5:5443 doi: 10.1038/ncomms6443 |
[7] |
Raina SK, Govindasamy V, Kumar M, Singh AK, Rane J, et al. 2016. Genetic variation in physiological responses of mungbeans (Vigna radiata (L.) Wilczek) to drought. Acta Physiologiae Plantarum 38:263 doi: 10.1007/s11738-016-2280-x |
[8] |
CABI. 2022. Vigna radiata (mung bean). CABI Compendium 2022:cabicompendium.40616 doi: 10.1079/cabicompendium.40616 |
[9] |
Reynolds TW, Waddington SR, Anderson CL, Chew A, True Z, et al. 2015. Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Security 7:795−822 doi: 10.1007/s12571-015-0478-1 |
[10] |
Connolly-Boutin L, Smit B. 2016. Climate change, food security, and livelihoods in sub-Saharan Africa. Regional Environmental Change 16:385−99 doi: 10.1007/s10113-015-0761-x |
[11] |
Zewdie A. 2014. Impacts of climate change on food security: a literature review in Sub Saharan Africa. Journal of Earth Science & Climatic Change 5:225 doi: 10.4172/2157-7617.1000225 |
[12] |
Smartt J. 1984. Gene pools in grain legumes. Economic Botany 38:24−35 doi: 10.1007/BF02904413 |
[13] |
Mogotsi KK. 2006. Vigna radiata (L.) R. Wilczek. In PROTA 1: Cereals and pulses/Céréales et légumes secs, eds Brink M, Belay G. Wageningen, Netherlands: PROTA. |
[14] |
Foyer CH, Lam HM, Nguyen HT, Siddique KHM, Varshney RK, et al. 2016. Neglecting legumes has compromised human health and sustainable food production. Nature Plants 2:16112 doi: 10.1038/nplants.2016.112 |
[15] |
Kumar S, Kumar R. 2014. Genetic improvement in mungbean [Vigna radiata (L). Wilzeck] for yield, nutrition and resistance to stresses - a review. International Journal of Tropical Agriculture 32:683−87 |
[16] |
International Market Analysis Research and Consulting (IMARC). 2018. Global mung beans market driven by various health benefits and multiple uses in the food industry. (Accessed on April 18, 2018). www.imarcgroup.com/global-mung-beans-market |
[17] |
Keatinge JDH, Easdown WJ, Yang RY, Chadha ML, Shanmugasundaram S. 2011. Overcoming chronic malnutrition in a future warming world: the key importance of mungbean and vegetable soybean. Euphytica 180:129−41 doi: 10.1007/s10681-011-0401-6 |
[18] |
Diatta AA, Thomason WE, Abaye O, Vaughan LJ, Thompson TL, et al. 2018. Inoculation and soil texture effects on yield and yield components of mungbean. Journal of Agricultural Science 10:6−16 doi: 10.5539/jas.v10n9p6 |
[19] |
Shah Z, Shah SH, Peoples MB, Schwenke GD, Herridge DF. 2003. Crop residue and fertiliser N effects on nitrogen fixation and yields of legume–cereal rotations and soil organic fertility. Field Crops Research 83:1−11 doi: 10.1016/S0378-4290(03)00005-4 |
[20] |
Mohammad W, Shehzadi S, Shah SM, Shah Z. 2010. Effect of tillage and crop residues management on mungbean (Vigna radiata (L.) Wilczek) crop yield, nitrogen fixation and water use efficiency in rainfed areas. Pakistan Journal of Botany 42:1781−89 |
[21] |
Delfin EF, Paterno ES, Torres FG, Santos PJA. 2008. Biomass, nitrogen uptake and fixed nitrogen partitioningin field grown mungbean (Vigna radiata L. Wilczek) inoculated with Bradyrhizobium sp. Philippine Journal of Crop Science 33:24−33 |
[22] |
Rosales C, Rivera F, Hautea R, Del Rosario E. 1998. Field evaluation of N2 fixation by mung bean in the Philippines, and residual effects on maize. Technical Report. IAEA-TECDOC-1027, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria. www.osti.gov/etdeweb/biblio/634524 |
[23] |
George T, Ladha JK, Garrity DP, Torres RO. 1995. Nitrogen dynamics of grain legume-weedy fallow-flooded rice sequences in the tropics. Agronomy Journal 87:1−6 doi: 10.2134/agronj1995.00021962008700010001x |
[24] |
Rosales C, Rivera F, Hautia R, Del Rosario E. 1995. Nitrogen fixation by mung bean (Vigna radiata L.) under field conditions in the Philippines as quantified by 15N isotope dilution. Technical Report. PNRI-C(AG)-95001, Philippine Nuclear Research Inst., Diliman, Quezon City, Philippines. www.osti.gov/etdeweb/biblio/130437 |
[25] |
Phoomthaisong J, Toomsan B, Limpinuntana V, Cadisch G, Patanothai A. 2003. Attributes affecting residual benefits of N2-fixing mungbean and groundnut cultivars. Biology and Fertility of Soils 39:16−24 doi: 10.1007/s00374-003-0676-4 |
[26] |
Toomsan B, Cadisch G, Srichantawong M, Thongsodsaeng C, Giller KE, et al. 2000. Biological N2 fixation and residual N benefit of pre-rice leguminous crops and green manures. NJAS: Wageningen Journal of Life Sciences 48:19−29 doi: 10.1016/S1573-5214(00)80002-0 |
[27] |
Rochester IJ, Peoples MB, Constable GA, Gault RR. 1998. Faba beans and other legumes add nitrogen to irrigated cotton cropping systems. Australian Journal of Experimental Agriculture 38:253−60 doi: 10.1071/EA97132 |
[28] |
Raji SG, Tzanakakis V, Dörsch P. 2019. Bradyrhizobial inoculation and P application effects on haricot and mung beans in the Ethiopian Rift Valley. Plant and Soil 442:271−84 doi: 10.1007/s11104-019-04170-2 |
[29] |
Umair A, Ali S, Hayat R, Ansar M, Tareen MJ. 2011. Evaluation of seed priming in mung bean (Vigna radiata) for yield, nodulation and biological nitrogen fixation under rainfed conditions. African Journal of Biotechnology 10:18122−29 doi: 10.5897/AJB11.1385 |
[30] |
Hayat R, Ali S. 2004. Potential of summer legumes to fix nitrogen and benefit wheat crop under rainfed condition. Journal of Agronomy 3:273−81 doi: 10.3923/ja.2004.273.281 |
[31] |
Peoples MB, Bergersen FJ, Turner GL, Sampet C, Rerkasem B, et al. 1991. Use of the natural enrichment of 15N in plant available soil N for the measurement of symbiotic N2 fixation. In Stable Isotopes in Plant Nutrition, Soil Fertility and Environmental Studies. International Atomic Energy Agency, Vienna, Austria. pp. 117−28 |
[32] |
Ali S, Hasan A, Ijaz SS, Ansar M. 2013. Mungbean (Vigna radiata) yield and di-nitrogen fixation under minimum tillage at semi arid Pothwar, Pakistan. Journal of Animal and Plant Sciences 23:198−202 |
[33] |
Hayat R, Ali S. 2010. Nitrogen fixation of legumes and yield of wheat under legumes-wheat rotation in Pothwar. Pakistan Journal of Botany 42:2317−26 |
[34] |
Hayat R, Ali S, Ijaz SS, Hussain T, Chatha, et al. 2008. Estimation of N2-fixation of mung bean and mash bean through xylem uriede technique under rainfed conditions. Pakistan Journal of Botany 40:723−34 |
[35] |
Tariq S, Ali S, Ijaz SS. 2007. Improving nitrogen fixation capacity and yield of mungbean and mashbean by phosphorous management in Pothowar. Sarhad Journal of Agriculture 23:1027−32 |
[36] |
Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey B, et al. 2008. Measuring plant-associated nitrogen fixation in agricultural systems. Australia: Australian Centre for International Agricultural Research (ACIAR). |
[37] |
Mbeyagala EK, Kwikiriza N, Amayo R, Omadi JR, Okwang D, et al. 2017. Participatory selection of mungbean genotypes in Uganda. African Crop Science Journal 25:253−62 doi: 10.4314/acsj.v25i2.9 |
[38] |
Nair R, Schafleitner R, Kenyon L, Srinivasan R, Easdown W, et al. 2012. Genetic improvement of mungbean. SABRAO Journal of Breeding and Genetics 44:177−90 |
[39] |
Waniale A, Wanyera N, Talwana H. 2014. Morphological and agronomic traits variations for mungbean variety selection and improvement in Uganda. African Crop Science Journal 22:123−36 |
[40] |
Herridge DF, Robertson MJ, Cocks B, Peoples MB, Holland JF, et al. 2005. Low nodulation and nitrogen fixation of mungbean reduce biomass and grain yields. Australian Journal of Experimental Agriculture 45:269−77 doi: 10.1071/EA03130 |
[41] |
FAOSTAT. 2024. Crops: production quantity. (Accessed on 03 August 2024). Available online: www.fao.org/faostat/en/#data/QC |
[42] |
Oo HH, Araki T, Kubota F. 2005. Effects of drought and flooding stresses on growth and photosynthetic activity of mungbean, Vigna radiata (L.) Wilczek, cultivars. Journal of the Faculty of Agriculture 50:533−42 doi: 10.5109/4667 |
[43] |
Diatta AA, Bassène C, Manga AGB, Abaye O, Thomason W, et al. 2023. Integrated use of organic amendments increased mungbean (Vigna radiata (L.) Wilczek) yield and its components compared to inorganic fertilizers. Urban Agriculture & Regional Food Systems 8:e20048 doi: 10.1002/uar2.20048 |
[44] |
Wahid F, Sharif M, Fahad S, Adnan M, Khan IA, et al. 2019. Arbuscular mycorrhizal fungi improve the growth and phosphorus uptake of mung bean plants fertilized with composted rock phosphate fed dung in alkaline soil environment. Journal of Plant Nutrition 42:1760−69 doi: 10.1080/01904167.2019.1643371 |
[45] |
Zang H, Yang X, Feng X, Qian X, Hu Y, et al. 2015. Rhizodeposition of nitrogen and carbon by mungbean (Vigna radiata L. ) and its contribution to intercropped oats (Avena nuda L.). PLoS One 10:e0121132 doi: 10.1371/journal.pone.0121132 |
[46] |
Thomas GA, Dalal RC, Weston EJ, King AJ, Holmes CJ, et al. 2010. Crop rotations for sustainable grain production on a Vertisol in the semi-arid subtropics. Journal of Sustainable Agriculture 35:2−26 doi: 10.1080/10440046.2011.530195 |
[47] |
Sekhon HS, Bains TS, Kooner BS, Sharma P. 2006. Grow summer mungbean for improving crop sustainability, farm income and malnutrition. Acta Horticulturae 752:459−64 doi: 10.17660/ACTAHORTIC.2007.752.83 |
[48] |
Moswetsi G, Fanadzo M, Ncube B. 2017. Cropping systems and agronomic management practices in smallholder farms in South Africa: constraints, challenges and opportunities. Journal of Agronomy 16:51−64 doi: 10.3923/ja.2017.51.64 |
[49] |
Trail P, Abaye O, Thomason WE, Thompson TL, Gueye F, et al. 2016. Evaluating intercropping (living cover) and mulching (desiccated cover) practices for increasing millet yields in Senegal. Agronomy Journal 108:1742−52 doi: 10.2134/agronj2015.0422 |
[50] |
Kumar N, Bairwa RC, Khinchi V, Meena RK, Sharma R. 2017. Evaluation of yield attributes and yield on pearl millet (Pennisetum glaucum) and mungbean (Vigna radiata L.) intercropping system under arid western plain zone of India. International Journal of Pure & Applied Bioscience 5:400−03 doi: 10.18782/2320-7051.5329 |
[51] |
Ghilotia YK, Meena RN, Singh L. 2014. Pearlmillet and mungbean intercropping as influenced by various row ratios under custard apple orchard of Vindhyan region. The Bioscan 10:87−91 |
[52] |
Shaker-Koohi S, Nasrollahzadeh S, Raei Y. 2014. Evaluation of chlorophyll value, protein content and yield of sorghum (Sorghum bicolor L.)/mungbean (Vigna radiate L.) intercropping. International Journal of Biosciences (IJB) 4:136−43 doi: 10.12692/ijb/4.8.136-143 |
[53] |
Ur Rehman O, Rashid M, Kausar R, Alvi S, Sajjad MR. 2015. Assessment of runoff and sediment losses under different slope gradients and crop covers in semi-arid watersheds. Soil & Environment 34:78−81 |
[54] |
Dwivedi A, Singh A, Naresh RK, Kumar M, Kumar V, et al. 2016. Towards sustainable intensification of maize (Zea mays L.) + legume intercropping systems; experiences; challenges and opportunities in India; a critical review. Journal of Pure and Applied Microbiology 10:725−41 |
[55] |
Shahida B, Khan IA. 2016. Impact of weed control techniques on intercropping of mungbean with maize under agro climate condition of Peshawar. Sarhad Journal of Agriculture 32:62−69 doi: 10.17582/journal.sja/2016/32.2.62.69 |
[56] |
Lu YH, Wu KM, Wyckhuys KAG, Guo YY . 2009. Potential of mungbean, Vigna radiatus as a trap crop for managing Apolygus lucorum (Hemiptera: Miridae) on Bt cotton. Crop Protection 28:77−81 doi: 10.1016/j.cropro.2008.08.018 |
[57] |
Geng H, Pan H, Lu Y, Yang Y. 2012. Nymphal and adult performance of Apolygus lucorum (Hemiptera: Miridae) on a preferred host plant, mungbean Vigna radiata. Applied Entomology and Zoology 47:191−97 doi: 10.1007/s13355-012-0107-9 |
[58] |
Wang Q, Bao WF, Yang F, Xu B, Yang YZ. 2017. The specific host plant DNA detection suggests a potential migration of Apolygus lucorum from cotton to mungbean fields. PLoS One 12:e0177789 doi: 10.1371/journal.pone.0177789 |
[59] |
Ganesan K, Xu B. 2017. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Science and Human Wellness 7:11−33 doi: 10.1016/j.fshw.2017.11.002 |
[60] |
Dahiya PK, Linnemann AR, Van Boekel MAJS, Khetarpaul N, Grewal RB, et al. 2015. Mung bean: technological and nutritional potential. Critical Reviews in Food Science and Nutrition 55:670−88 doi: 10.1080/10408398.2012.671202 |
[61] |
United States Department of Agriculture (USDA). 2010. National Nutrient Database. www.nal.usda.gov/fnic/foodcomp/search |
[62] |
Kumar A, Sharma S, Sital JS, Singh S. 2013. Effect of sulfur and nitrogen nutrition on storage protein quality in mungbean [Vigna radiata (L.) Wilczek] seeds. Indian Journal of Agricultural Biochemistry 26:86−91 |
[63] |
Gupta YP. 1987. Anti-nutritional and toxic factors in food legumes: a review. Plant Foods for Human Nutrition 37:201−28 doi: 10.1007/BF01091786 |
[64] |
Dhole VJ, Reddy KS. 2015. Genetic variation for phytic acid content in mungbean (Vigna radiata L. Wilczek). The Crop Journal 3:157−62 doi: 10.1016/j.cj.2014.12.002 |
[65] |
Kumar Dahiya P, Nout MJR, van Boekel MA, Khetarpaul N, Bala Grewal R, et al. 2014. Nutritional characteristics of mung bean foods. British Food Journal 116:1031−46 doi: 10.1108/BFJ-11-2012-0280 |
[66] |
Puranik V, Mishra V, Singh N, Rai GK. 2011. Studies on development of protein rich germinated green gram pickle and its preservation by using class one preservatives. American Journal of Food Technology 6:742−52 doi: 10.3923/ajft.2011.742.752 |
[67] |
Nair RM, Yang RY, Easdown WJ, Thavarajah D, Thavarajah P, et al. 2013. Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. Journal of the Science of Food and Agriculture 93:1805−13 doi: 10.1002/jsfa.6110 |
[68] |
Anwar F, Latif S, Przybylski R, Sultana B, Ashraf M. 2007. Chemical composition and antioxidant activity of seeds of different cultivars of mungbean. Journal of Food Science 72:S503−S510 doi: 10.1111/j.1750-3841.2007.00462.x |
[69] |
Chitra U, Vimala V, Singh U, Geervani P. 1995. Variability in phytic acid content and protein digestibility of grain legumes. Plant Foods for Human Nutrition 47:163−72 doi: 10.1007/BF01089266 |
[70] |
Bhardwaj HL, Rangappa M, Hamama AA. 1999. Chickpea, faba bean, lupin, mungbean, and pigeonpea: potential new crops for the Mid-Atlantic Region of the United States. In Perspectives on New Crops and New Uses, ed. Janick J. Alexandria, VA: ASHS Press. pp. 202−05. www.hort.purdue.edu/newcrop/proceedings1999/pdf/bhar-leg.pdf |
[71] |
Dhayal BL, Patel CR, Mehta BM. 2015. A study on constraints perceived by the farmers in adoption of moongbean production technology in Vadodara and Chhotaudaipur district of Gujarat. Agriculture Update 10:343−50 doi: 10.15740/HAS/AU/10.4/343-350 |
[72] |
Diatta AA, Abaye O, Thomason WE, Lo M, Guèye F, et al. 2019. Effect of intercropping mungbean on millet yield in the Peanut basin, Senegal. Innovations Agronomiques 74:69−81 |
[73] |
Akaerue BI, Onwuka GI. 2005. The proximate composition, physical qualities, sensory attributes and microbial load of mungbean biscuits as affected by processing. Journal of Emerging Trends in Engineering and Applied Sciences 4:250−57 |
[74] |
Abaye AO, Archibald TG, Vaughan L, Thompson TL, Thomason WE, et al. 2018. Internationalizing the land grant mission: lessons from Senegal. Virginia Cooperative Extension, Virginia Tech, US. |
[75] |
Vashro TN. 2017. The effect of mung bean on improving dietary diversity in women and children in Senegal. Thesis. Virginia Polytechnic Institute and StateUniversity, US. |
[76] |
Chadha M. 2001. Mungbean (Vigna radiata L.), a choice crop for improvement of human and soil health in southern Africa. In Combating Desertification with Plants, eds Pasternak D, Schlissel A. Boston, MA: Springer. pp. 263–71. doi: 10.1007/978-1-4615-1327-8_25 |
[77] |
Imtiaz H, BurhanUddin M, Gulzar MA. 2011. Evaluation of weaning foods formulated from germinated wheat and mungbean from Bangladesh. African Journal of Food Science 5:897−903 doi: 10.5897/AJFS11.180 |
[78] |
Akaerue BI, Onwuka GI. 2010. Evaluation of the yield, protein content and functional properties of mungbean [Vigna radiata (L.) Wilczek] protein isolates as affected by processing. Pakistan Journal of Nutrition 9:728−35 doi: 10.3923/pjn.2010.728.735 |
[79] |
Tang D, Dong Y, Ren H, Li L, He C. 2014. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal 8:4 doi: 10.1186/1752-153X-8-4 |
[80] |
Cao D, Li H, Yi J, Zhang J, Che H, et al. 2011. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLoS One 6:e21071 doi: 10.1371/journal.pone.0021071 |
[81] |
Sherasia P, Garg MR, Babulal B, Calles T. 2017. Pulses and their by-products as animal feed, eds Calles T, Makkar H. Food and Agriculture Organization of the United Nations (FAO), Canada. |
[82] |
Rao SC, Northup BK. 2009. Capabilities of four novel warm-season legumes in the southern Great Plains: biomass and forage quality. Crop Science 49:1096−102 doi: 10.2135/cropsci2008.08.0499 |
[83] |
Lambrides CJ, Godwin ID. 2007. Mungbean. In Pulses, Sugar and Tuber Crops, vol 3. Berlin, Heidelberg: Springer. pp 69–90. doi: 10.1007/978-3-540-34516-9_4 |
[84] |
Amin M, Karim MA, Islam MR, Aktar S, Hossain MA. 2016. Effect of flooding on growth and yield of mungbean genotypes. Bangladesh Journal of Agricultural Research 41:151−62 doi: 10.3329/bjar.v41i1.27680 |
[85] |
Lalinia AA, Hoseini NM, Galostian M, Bahabadi SE, Khameneh MM. 2012. Echophysiological impact of water stress on growth and development of mungbean. International Journal of Agronomy and Plant Production 3:599−607 |
[86] |
Lal SS. 1985. A review of insect pests of mungbean and their control in India. Tropical Pest Management 31:105−14 doi: 10.1080/09670878509370960 |
[87] |
Swaminathan R, Singh K, Nepalia V. 2012. Insect pests of green gram Vigna radiata (L.) Wilczek and their management. In Agricultural Science. ed. Aflakpui G. UK: InTech. pp. 197−222. www.intechopen.com/books/agricultural-science/insect-pests-of-green-gram-vigna-radiata-l-wilczek-and-their-management |
[88] |
Dubey SC, Singh B. 2013. Integrated management of major diseases of mungbean by seed treatment and foliar application of insecticide, fungicides and bioagent. Crop Protection 47:55−60 doi: 10.1016/j.cropro.2012.12.025 |
[89] |
Anjum T, Gupta KS, Datta S. 2010. Mapping of mungbean yellow mosaic India virus (MYMIV) and powdery mildew resistant gene in black gram [Vigna mungo (L.) Hepper]. Electronic Journal of Plant Breeding 1:1148−52 |
[90] |
Nair RM, Pandey AK, War AR, Hanumantharao B, Shwe T, et al. 2019. Biotic and abiotic constraints in mungbean production—progress in genetic improvement. Frontiers in Plant Science 10:1340 doi: 10.3389/fpls.2019.01340 |
[91] |
Ali S, Khan MA, Zeshan MA, Habib A, Haider MS. 2015. Characterization of conducive environmental conditions for mungbean yellow mosaic virus disease incidence on mungbean germplasm. Pakistan Journal of Phytopathology 27:27−30 |
[92] |
Munawwar MH, Ali A, Malik SR. 2014. Identification of resistance in mungbean and mashbean germplasm against mungbean yellow mosaic virus. Pakistan Journal of Agricultural Research 27:129−35 |
[93] |
Suman S, Sharma VK, Kumar H, Shahi VK. 2015. Screening of mungbean [Vigna radiata (L.) Wilczek] genotypes for resistance to mungbean yellow mosaic virus (MYMV). Environment & Ecology 33:855−59 |
[94] |
Akibode CS. 2011. Trends in the production, trade, and consumption of food legume crops in Sub-Saharan Africa. Thesis. Michigan State University, US. 85 pp. doi: 10.22004/ag.econ.114247 |
[95] |
Diatta AA, Min D, Jagadish SVK. 2021. Drought stress responses in non-transgenic and transgenic alfalfa—current status and future research directions. Advances in Agronomy 170:35−100 doi: 10.1016/bs.agron.2021.06.002 |
[96] |
Terdoo F, Feola G. 2016. The vulnerability of rice value chains in Sub-Saharan Africa: a review. Climate 4:47 doi: 10.3390/cli4030047 |
[97] |
Tirado MC, Hunnes D, Cohen MJ, Lartey A. 2015. Climate change and nutrition in Africa. Journal of Hunger & Environmental Nutrition 10:22−46 doi: 10.1080/19320248.2014.908447 |
[98] |
Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, et al. 2015. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist 206:107−17 doi: 10.1111/nph.13132 |
[99] |
Lal R, Singh BR, Mwaseba DL, Kraybill D, Hansen DO, et al. 2015. Sustainable intensification to advance food security and enhance climate resilience in Africa. Switzerland, Heidelberg: Springer International Publishing. doi: 10.1007/978-3-319-09360-4 |
[100] |
Odeny DA. 2007. The potential of pigeonpea (Cajanus cajan (L.) Millsp.) in Africa. Natural Resources Forum 31:297−305 doi: 10.1111/j.1477-8947.2007.00157.x |
[101] |
Shishaye HA. 2015. The negative impacts of climate change in Sub-Saharan Africa and their mitigation measures. Current Journal of Applied Science and Technology 11:1−9 doi: 10.9734/BJAST/2015/17665 |
[102] |
Diatta AA, Ndour N, Manga A, Sambou B, Faye CS, et al. 2016. Floristic composition and dynamics of Cordyla pinnata (Lepr. ex A. Rich.) Milne-Redh. agroforestry parkland of Senegal's South Peanut Basin. International Journal of Biological and Chemical Sciences 10:1805−22 |