[1]

Gómez JM, Verdú M, Perfectti F. 2010. Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465:918−21

doi: 10.1038/nature09113
[2]

Pellissier L, Ndiribe C, Dubuis A, Pradervand JN, Salamin N, et al. 2013. Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients. Ecology Letters 16:600−8

doi: 10.1111/ele.12083
[3]

Yang T, Tedersoo L, Soltis PS, Soltis DE, Gilbert JA, et al. 2019. Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain forests of eastern China. The ISME Journal 13:686−97

doi: 10.1038/s41396-018-0303-x
[4]

Tedersoo L, Mett M, Ishida TA, Bahram M. 2013. Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytologist 199:822−31

doi: 10.1111/nph.12328
[5]

Peay KG, Baraloto C, Fine PVA. 2013. Strong coupling of plant and fungal community structure across western Amazonian rainforests. The ISME Journal 7:1852−61

doi: 10.1038/ismej.2013.66
[6]

Gehring CA, Sthultz CM, Flores-Rentería L, Whipple AV, Whitham TG. 2017. Tree genetics defines fungal partner communities that may confer drought tolerance. Proceedings of the National Academy of Sciences of the United States of America 114:11169−74

doi: 10.1073/pnas.1704022114
[7]

Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, Weber L, Brackin R, et al. 2017. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nature Communications 8:215

doi: 10.1038/s41467-017-00262-8
[8]

Yang T, Song L, Lin HY, Dong K, Fu X, et al. 2023. Within-species plant phylogeny drives ectomycorrhizal fungal community composition in tree roots along a timberline. Soil Biology and Biochemistry 176:108880

doi: 10.1016/j.soilbio.2022.108880
[9]

Pérez‐Izquierdo L, Zabal‐Aguirre M, González‐Martínez SC, Buée M, Verdú M, et al. 2019. Plant intraspecific variation modulates nutrient cycling through its below ground rhizospheric microbiome. Journal of Ecology 107:1594−605

doi: 10.1111/1365-2745.13202
[10]

Smith SE, Read DJ. 2010. Mycorrhizal symbiosis. Cambridge, UK: Academic press. doi: 10.1016/B978-0-12-370526-6.X5001-6

[11]

Martin FM, Uroz S, Barker DG. 2017. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356:eaad4501

doi: 10.1126/science.aad4501
[12]

Davison J, Öpik M, Daniell TJ, Moora M, Zobel M. 2011. Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiology Ecology 78:103−15

doi: 10.1111/j.1574-6941.2011.01103.x
[13]

Davison J, Moora M, Jairus T, Vasar M, Öpik M, et al. 2016. Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities. Soil Biology and Biochemistry 97:63−70

doi: 10.1016/j.soilbio.2016.03.003
[14]

Chen L, Zheng Y, Gao C, Mi XC, Ma KP, et al. 2017. Phylogenetic relatedness explains highly interconnected and nested symbiotic networks of woody plants and arbuscular mycorrhizal fungi in a Chinese subtropical forest. Molecular Ecology 26:2563−75

doi: 10.1111/mec.14061
[15]

Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M. 2015. Evidence for phylogenetic correlation of plant–AMF assemblages? Annals of Botany 115:171−77

doi: 10.1093/aob/mcu228
[16]

López‐García Á, Varela‐Cervero S, Vasar M, Öpik M, Barea JM, et al. 2017. Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities. Molecular Ecology 26:6948−59

doi: 10.1111/mec.14403
[17]

Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, et al. 2015. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970−73

doi: 10.1126/science.aab1161
[18]

Põlme S, Bahram M, Jacquemyn H, Kennedy P, Kohout P, et al. 2018. Host preference and network properties in biotrophic plant–fungal associations. New Phytologist 217:1230−39

doi: 10.1111/nph.14895
[19]

Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V. 2010. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165−79

doi: 10.1111/j.1462-2920.2009.02099.x.
[20]

Caporaso JG, Kuczynski J, Stombaugh J. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335−36

doi: 10.1038/nmeth.f.303
[21]

Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, et al. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods 10:57−59

doi: 10.1038/nmeth.2276
[22]

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194−200

doi: 10.1093/bioinformatics/btr381
[23]

Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, et al. 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188:223−41

doi: 10.1111/j.1469-8137.2010.03334.x
[24]

Davison J, Öpik M, Zobel M, Vasar M, Metsis M, et al. 2012. Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS One 7:e41938

doi: 10.1371/journal.pone.0041938
[25]

Thompson JD, Gibson TJ, Higgins DG. 2003. Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics 00:2.3.1−2.3.22

doi: 10.1002/0471250953.bi0203s00
[26]

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688−90

doi: 10.1093/bioinformatics/btl446
[27]

Jin Y, Qian H. 2022. V. PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Diversity 44:335−39

doi: 10.1016/j.pld.2022.05.005
[28]

Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526−28

doi: 10.1093/bioinformatics/bty633
[29]

Pillar VD, Duarte LdS. 2010. A framework for metacommunity analysis of phylogenetic structure. Ecology Letters 13:587−96

doi: 10.1111/j.1461-0248.2010.01456.x
[30]

Debastiani VJ, Muller SC, Oliveira JM, Rocha FS, Sestren-Bastos MC, et al. 2015. Recurrent patterns of phylogenetic habitat filtering in woody plant communities across phytogeographically distinct grassland-forest ecotones. Community Ecology 16:1−9

doi: 10.1556/168.2015.16.1
[31]

Duarte LDS, Prieto PV, Pillar VD. 2012. Assessing spatial and environmental drivers of phylogenetic structure in Brazilian Araucaria forests. Ecography 35:952−60

doi: 10.1111/j.1600-0587.2011.07193.x
[32]

Pérez-Valera E, Goberna M, Verdú M. 2015. Phylogenetic structure of soil bacterial communities predicts ecosystem functioning. FEMS Microbiology Ecology 91:fiv031

doi: 10.1093/femsec/fiv031
[33]

Fine PV, Kembel SW. 2011. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34:552−65

doi: 10.1111/j.1600-0587.2010.06548.x
[34]

Stone GN, Nee S, Felsenstein J. 2011. Controlling for non-independence in comparative analysis of patterns across populations within species. Philosophical Transactions of the Royal Society B: Biological Sciences 366:1410−24

doi: 10.1098/rstb.2010.0311
[35]

Hadfield JD. 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of statistical software 33:1−22

doi: 10.18637/jss.v033.i02
[36]

Nakagawa S, Cuthill IC. 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews 82:591−605

doi: 10.1111/j.1469-185X.2007.00027.x
[37]

Hijmans RJ. 2019. Introduction to the "geosphere" package (Version 1.5-10). https://cran.r-project.org/web/packages/geosphere/

[38]

Lowe WH, McPeek MA. 2014. Is dispersal neutral? Trends in Ecology & Evolution 29:444−50

doi: 10.1016/j.tree.2014.05.009
[39]

Davison J, Moora M, Öpik M, Ainsaar L, Ducousso M, et al. 2018. Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. The ISME Journal 12:2211−24

doi: 10.1038/s41396-018-0196-8
[40]

Savary R, Masclaux FG, Wyss T, Droh G, Cruz Corella J, et al. 2018. A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. The ISME Journal 12:17−30

doi: 10.1038/ismej.2017.153
[41]

Correia M, Heleno R, da Silva LP, Costa JM, Rodríguez-Echeverría S. 2019. First evidence for the joint dispersal of mycorrhizal fungi and plant diaspores by birds. New Phytologist 222:1054−60

doi: 10.1111/nph.15571
[42]

Chaudhary VB, Lau MK, Johnson NC. 2008. Macroecology of microbes – biogeography of the Glomeromycota. In Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, ed. Varma A. Berlin Heidelberg: Springer. pp. 529−63. doi: 10.1007/978-3-540-78826-3_26

[43]

Egan C, Li DW, Klironomos J. 2014. Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions. Fungal Ecol 12:26−31

doi: 10.1016/j.funeco.2014.06.004
[44]

Gormsen D, Olsson PA, Hedlund K. 2004. The influence of collembolans and earthworms on AM fungal mycelium. Applied Soil Ecology 27:211−20

doi: 10.1016/j.apsoil.2004.06.001
[45]

García de León D, Moora M, Öpik M, Jairus T, Neuenkamp L, et al. 2016. Dispersal of arbuscular mycorrhizal fungi and plants during succession. Acta Oecologica 77:128−35

doi: 10.1016/j.actao.2016.10.006
[46]

Chagnon PL. 2016. Seeing networks for what they are in mycorrhizal ecology. Fungal Ecology 24:148−54

doi: 10.1016/j.funeco.2016.05.004
[47]

Kivlin SN, Winston GC, Goulden ML, Treseder KK. 2014. Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. Fungal Ecology 12:14−25

doi: 10.1016/j.funeco.2014.04.004
[48]

Hart MM, Reader RJ. 2002. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist 153:335−44

doi: 10.1046/j.0028-646X.2001.00312.x
[49]

Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal 4:337−45

doi: 10.1038/ismej.2009.122
[50]

Hoeksema JD. 2010. Ongoing coevolution in mycorrhizal interactions. New Phytologist 187:286−300

doi: 10.1111/j.1469-8137.2010.03305.x
[51]

Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, et al. 2002. Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology 11:1555−64

doi: 10.1046/j.1365-294X.2002.01538.x
[52]

Hoeksema JD, Bever JD, Chakraborty S, Chaudhary VB, Gardes M, et al. 2018. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Communications Biology 1:116

doi: 10.1038/s42003-018-0120-9
[53]

Encinas‐Viso F, Alonso D, Klironomos JN, Etienne RS, Chang ER. 2016. Plant–mycorrhizal fungus co‐occurrence network lacks substantial structure. Oikos 125:457−67

doi: 10.1111/oik.02667
[54]

Liu Z, Fang J, He Y, Bending GD, Song B, et al. 2024. Distinct biogeographic patterns in Glomeromycotinian and Mucoromycotinian arbuscular mycorrhizal fungi across China: A meta-analysis. Science of The Total Environment 912:168907

doi: 10.1016/j.scitotenv.2023.168907
[55]

López-Angulo J, Matesanz S, Illuminati A, Pescador DS, Sánchez AM, et al. 2023. Ecological drivers of fine-scale distribution of arbuscular mycorrhizal fungi in a semiarid Mediterranean scrubland. Annals of Botany 131:1107−19

doi: 10.1093/aob/mcad050
[56]

Bueno CG, Moora M. 2019. How do arbuscular mycorrhizal fungi travel? New Phytologist 222:645−47

doi: 10.1111/nph.15722
[57]

Fan D, Ji M, Wu J, Chen H, Jia H, et al. 2023. Grazing does not influence soil arbuscular mycorrhizal fungal diversity, but increases their interaction complexity with plants in dry grasslands on the Tibetan Plateau. Ecological Indicators 148:110065

doi: 10.1016/j.ecolind.2023.110065