[1] |
Garza-Cadena C, Ortega-Rivera DM, Machorro-García G, Gonzalez-Zermeño EM, Homma-Dueñas D, et al. 2023. A comprehensive review on ginger (Zingiber officinale) as a potential source of nutraceuticals for food formulations: Towards the polishing of gingerol and other present biomolecules. Food Chemistry 413:135629 doi: 10.1016/j.foodchem.2023.135629 |
[2] |
FAOSTAT. 2022. Production quantities of Ginger, raw by country. www.fao.org/faostat/en/#data/QCL/visualize |
[3] |
Liu Y, Liu J, Zhang Y. 2019. Research progress on chemical constituents of Zingiber officinale Roscoe. BioMed Research International 2019:5370823 doi: 10.1155/2019/5370823 |
[4] |
Iara Gomes de Oliveira L, Karoline Almeida da Costa W, de Candido de Oliveira F, França Bezerril F, Priscila Alves Maciel Eireli L, et al. 2024. Ginger beer derived from back-slopping: volatile compounds, microbial communities on activation and fermentation, metabolites and sensory characteristics. Food Chemistry 435:137640 doi: 10.1016/j.foodchem.2023.137640 |
[5] |
Pu Y, Chen L, He X, Ma Y, Cao J, et al. 2023. Potential beneficial effects of functional components of edible plants on COVID-19: Based on their anti-inflammatory and inhibitory effect on SARS-CoV-2. Food Innovation and Advances 2(1):44−59 doi: 10.48130/FIA-2023-0006 |
[6] |
Kiyama R. 2020. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. The Journal of Nutritional Biochemistry 86:108486 doi: 10.1016/j.jnutbio.2020.108486 |
[7] |
Jiang T, Liao W, Charcosset C. 2020. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Research International 132:109035 doi: 10.1016/j.foodres.2020.109035 |
[8] |
Araiza-Calahorra A, Akhtar M, Sarkar A. 2018. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends in Food Science & Technology 71:155−69 doi: 10.1016/j.jpgs.2017.11.009 |
[9] |
Wakte PS, Sachin BS, Patil AA, Mohato DM, Band TH, et al. 2011. Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Separation and Purification Technology 79:50−55 doi: 10.1016/j.seppur.2011.03.010 |
[10] |
Li Z, Lin Q, McClements DJ, Fu Y, Xie H, et al. 2021. Curcumin-loaded core-shell biopolymer nanoparticles produced by the pH-driven method: Physicochemical and release properties. Food Chemistry 355:129686 doi: 10.1016/j.foodchem.2021.129686 |
[11] |
Wan L, Chen Q, Huang M, Liu F, Pan S. 2019. Physiochemical, rheological and emulsifying properties of low methoxyl pectin prepared by high hydrostatic pressure-assisted enzymatic, conventional enzymatic, and alkaline de-esterification: A comparison study. Food Hydrocolloids 93:146−55 doi: 10.1016/j.foodhyd.2019.02.022 |
[12] |
Jiang T, Ghosh R, Charcosset C. 2021. Extraction, purification and applications of curcumin from plant materials—A comprehensive review. Trends in Food Science & Technology 112:419−30 doi: 10.1016/j.jpgs.2021.04.015 |
[13] |
Ding N, Zhou Y, Dou P, Chang SKC, Feng R, et al. 2024. Colorful and nutritious abundance: potential of natural pigment application in aquatic products. Food Innovation and Advances 3(3):232−43 doi: 10.48130/fia-0024-0023 |
[14] |
Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, et al. 2012. Curcumin—from molecule to biological function. Angewandte Chemie Internatinal Edition 51:5308−32 doi: 10.1002/anie.201107724 |
[15] |
Doldolova K, Bener M, Lalikoğlu M, Aşçı YS, Arat R, et al. 2021. Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chemistry 353:129337 doi: 10.1016/j.foodchem.2021.129337 |
[16] |
Kou X, Ke Y, Wang X, Rahman MRT, Xie Y, et al. 2018. Simultaneous extraction of hydrophobic and hydrophilic bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chemistry 257:223−29 doi: 10.1016/j.foodchem.2018.02.125 |
[17] |
Osorio-Tobón JF, Carvalho PIN, Rostagno MA, Meireles MAA. 2016. Process integration for turmeric products extraction using supercritical fluids and pressurized liquids: Economic evaluation. Food and Bioproducts Processing 98:227−35 doi: 10.1016/j.fbp.2016.02.001 |
[18] |
Shirsath SR, Sable SS, Gaikwad SG, Sonawane SH, Saini DR, et al. 2017. Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of different operating parameters. Ultrasonics Sonochemistry 38:437−45 doi: 10.1016/j.ultsonch.2017.03.040 |
[19] |
Yan S, Li Y, Liu J, Si D, Zhang X. 2023. Guideline for extraction, qualitative, quantitative, and stability analysis of anthocyanins. eFood 4:e59 doi: 10.1002/efd2.59 |
[20] |
Bahrani S, Ghaedi M, Khoshnood Mansoorkhani MJ, Ostovan A. 2017. A highly selective nanocomposite based on MIP for curcumin trace levels quantification in food samples and human plasma following optimization by central composite design. Journal of Chromatography B 1040:129−35 doi: 10.1016/j.jchromb.2016.12.011 |
[21] |
Setyaningsih D, Santoso YA, Hartini YS, Murti YB, Hinrichs WLJ, et al. 2021. Isocratic high-performance liquid chromatography (HPLC) for simultaneous quantification of curcumin and piperine in a microparticle formulation containing Curcuma longa and Piper nigrum. Heliyon 7:e06541 doi: 10.1016/j.heliyon.2021.e06541 |
[22] |
Tinello F, Lante A. 2019. Valorisation of ginger and turmeric peels as source of natural antioxidants. Plant Foods for Human Nutrition 74:443−45 doi: 10.1007/s11130-019-00748-4 |
[23] |
Tang W, Zhu SC, Tan XJ, Cao J, Ye LH. 2023. Chemometrics and antioxidant activity assisted nontargeted metabolomics for the identification of ginger species. Journal of Pharmaceutical and Biomedical Analysis 234:115546 doi: 10.1016/j.jpba.2023.115546 |
[24] |
Eysseric E, Barry K, Beaudry F, Houde M, Gagnon C, et al. 2017. Application of spectral accuracy to improve the identification of organic compounds in environmental analysis. Analytical Chemistry 89:9805−13 doi: 10.1021/acs.analchem.7b01761 |
[25] |
Wu C, Wang L, Li H, Yu S. 2019. Determination of 4(5)-methylimidazole in foods and beverages by modified QuEChERS extraction and liquid chromatography-tandem mass spectrometry analysis. Food Chemistry 280:278−85 doi: 10.1016/j.foodchem.2018.12.065 |
[26] |
Jin C, Kong W, Luo Y, Wang J, Wang H, et al. 2010. Development and validation of UPLC method for quality control of Curcuma longa Linn.: Fast simultaneous quantitation of three curcuminoids. Journal of Pharmaceutical Biomedical Analysis 53:43−49 doi: 10.1016/j.jpba.2010.03.021 |
[27] |
Ložnjak Švarc P, Barnkob LL, Jakobsen J. 2021. Quantification of vitamin D3 and 25-hydroxyvitamin D3 in food – The impact of eluent additives and labelled internal standards on matrix effects in LC-MS/MS analysis. Food Chemistry 357:129588 doi: 10.1016/j.foodchem.2021.129588 |
[28] |
Weng R, Lou S, Pang X, Song Y, Su X, et al. 2020. Multi-residue analysis of 126 pesticides in chicken muscle by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chemistry 309:125503 doi: 10.1016/j.foodchem.2019.125503 |
[29] |
Caminhas LD, Freitas Pereira de Souza G, Rath S. 2024. Assessment of tropane alkaloid levels in Brazilian buckwheat flour products: A novel LC-UHPLC-MS/MS approach using solid-liquid extraction at low temperature. Food Chemistry 438:138010 doi: 10.1016/j.foodchem.2023.138010 |
[30] |
Jia Z, Wang Y, Wang L, Zheng Y, Jin P. 2022. Amino acid metabolomic analysis involved in flavor quality and cold tolerance in peach fruit treated with exogenous glycine betaine. Food Research International 157:111204 doi: 10.1016/j.foodres.2022.111204 |
[31] |
Patil SS, Deshannavar UB, Gadekar-Shinde SN, Gadagi AH, Kadapure SA. 2023. Optimization studies on batch extraction of phenolic compounds from Azadirachta indica using genetic algorithm and machine learning techniques. Heliyon 9:e21991 doi: 10.1016/j.heliyon.2023.e21991 |
[32] |
Xi J, Yan L. 2017. Optimization of pressure-enhanced solid-liquid extraction of flavonoids from Flos Sophorae and evaluation of their antioxidant activity. Separation and Purification Technology 175:170−76 doi: 10.1016/j.seppur.2016.10.013 |
[33] |
Akter J, Hossain MA, Takara K, Islam MZ, Hou DX. 2019. Antioxidant activity of different species and varieties of turmeric (Curcuma spp): Isolation of active compounds. Comparative Biochemistry and Physiology, part C 215:9−17 doi: 10.1016/j.cbpc.2018.09.002 |
[34] |
Cheng M, He J, wang H, Li C, Wu G, et al. 2023. Comparison of microwave, ultrasound and ultrasound-microwave assisted solvent extraction methods on phenolic profile and antioxidant activity of extracts from jackfruit (Artocarpus heterophyllus Lam.) pulp. LWT 173:114395 doi: 10.1016/j.lwt.2022.114395 |
[35] |
Singh S, Singh R, Banerjee S, Negi AS, Shanker K. 2012. Determination of anti-tubercular agent in mango ginger (Curcuma amada Roxb.) by reverse phase HPLC-PDA-MS. Food Chemistry 131:375−79 doi: 10.1016/j.foodchem.2011.08.054 |
[36] |
Lee JH, Choung MG. 2011. Determination of curcuminoid colouring principles in commercial foods by HPLC. Food Chemistry 124:1217−22 doi: 10.1016/j.foodchem.2010.07.049 |
[37] |
Jorge-Montalvo P, Vílchez-Perales C, Visitación-Figueroa L. 2023. Evaluation of antioxidant capacity, structure, and surface morphology of ginger (Zingiber officinale) using different extraction methods. Heliyon 9:e16516 doi: 10.1016/j.heliyon.2023.e16516 |
[38] |
Cui Z, Yao L, Ye J, Wang Z, Hu Y. 2021. Solubility measurement and thermodynamic modelling of curcumin in twelve pure solvents and three binary solvents at different temperature(T=278.15-323.15K). Journal of Molecular Liquids 338:116795 doi: 10.1016/j.molliq.2021.116795 |
[39] |
Pinelo M, Rubilar M, Jerez M, Sineiro J, Núñez MJ. 2005. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry 53:2111−17 doi: 10.1021/jf0488110 |
[40] |
Katsampa P, Valsamedou E, Grigorakis S, Makris DP. 2015. A green ultrasound-assisted extraction process for the recovery of antioxidant polyphenols and pigments from onion solid wastes using Box–Behnken experimental design and kinetics. Industrial Crops and Products 77:535−43 doi: 10.1016/j.indcrop.2015.09.039 |
[41] |
Liu D, Zeng XA, Sun DW, Han Z. 2013. Disruption and protein release by ultrasonication of yeast cells. Innovative Food Science & Emerging Technologies 18:132−37 doi: 10.1016/j.ifset.2013.02.006 |
[42] |
Ravindran A, Ramaswamy HS. 2023. Effect of sonication - cooking on the immunoreactivity of soy slurry from germinated soybeans. Food Innovation and Advances 2(2):60−68 doi: 10.48130/FIA-2023-0008 |
[43] |
Bi W, Tian M, Row KH. 2011. Ultrasonication-assisted extraction and preconcentration of medicinal products from herb by ionic liquids. Talanta 85:701−6 doi: 10.1016/j.talanta.2011.04.054 |
[44] |
Suslick KS, Eddingsaas NC, Flannigan DJ, Hopkins SD, Xu H. 2011. Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe. Ultrasonics Sonochemistry 18:842−46 doi: 10.1016/j.ultsonch.2010.12.012 |
[45] |
Zhu CQ, Chen JB, Zhao CN, Liu XJ, Chen YY, et al. 2023. Advances in extraction and purification of citrus flavonoids. Food Frontiers 4:750−81 doi: 10.1002/fft2.236 |
[46] |
Qian S, Lu M, Zhou X, Sun S, Han Z, et al. 2024. Improvement in caffeic acid and ferulic acid extraction by oscillation-assisted mild hydrothermal pretreatment from sorghum straws. Bioresource Technology 396:130442 doi: 10.1016/j.biortech.2024.130442 |
[47] |
Gan CY, Latiff AA. 2011. Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chemistry 124:1277−83 doi: 10.1016/j.foodchem.2010.07.074 |
[48] |
Wang Y, You J, Yu Y, Qu C, Zhang H, et al. 2008. Analysis of ginsenosides in Panax ginseng in high pressure microwave-assisted extraction. Food Chemistry 110:161−67 doi: 10.1016/j.foodchem.2008.01.028 |
[49] |
Liu Y, Jiang H. 2023. Qualitative and quantitative analysis of curcumin in dried ginger by the resonance rayleigh scattering technique and absorption spectroscopy. Journal of Food Composition and Analysis 115:104923 doi: 10.1016/j.jfca.2022.104923 |