[1]

Korotkova N, Borsch T, Arias S. 2017. A phylogenetic framework for the Hylocereeae (Cactaceae) and implications for the circumscription of the genera. Phytotaxa 327(1):1−46

doi: 10.11646/phytotaxa.327.1.1
[2]

Shah K, Chen J, Chen J, Qin Y. 2023. Pitaya nutrition, biology, and biotechnology: a review. International Journal of Molecular Sciences 24:13986

doi: 10.3390/ijms241813986
[3]

Yu YB. 2012. Research progress and development of pitaya flower. Journal of Tropical Organisms

[4]

Sun P, Cheng Z, Sun C, Guo S, Guo G, et al. 2020. Floral organogenesis of red pitaya (Hylocereus monacanthus). Fujian Journal of Agricultural Sciences 35(9):943−49

doi: 10.19303/j.issn.1008-0384.2020.09.004
[5]

Hua Q, Chen C, Tel Zur N, Wang H, Wu J, et al. 2018. Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiology and Biochemistry 126:117−25

doi: 10.1016/j.plaphy.2018.02.027
[6]

Liaotrakoon W, Van Buggenhout S, Christiaens S, Houben K, De Clercq N, et al. 2013. An explorative study on the cell wall polysaccharides in the pulp and peel of dragon fruits (Hylocereus spp. ). European Food Research and Technology 237:341−51

doi: 10.1007/s00217-013-1997-7
[7]

Lim HK, Tan CP, Karim R, Ariffin AA, Bakar J. 2010. Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chemistry 119:1326−31

doi: 10.1016/j.foodchem.2009.09.002
[8]

García-Cruz L, Valle-Guadarrama S, Salinas-Moreno Y, Joaquín-Cruz E. 2013. Physical, Chemical, and Antioxidant Activity Characterization of Pitaya (Stenocereus pruinosus) Fruits. Plant Foods for Human Nutrition 68:403−10

doi: 10.1007/s11130-013-0391-8
[9]

Hsieh CL, Huang SM, Chen LI, Yu CM, Wong CH, et al. 2016. Novel approach of using nutraceutic-directed caloric antioxidant density and ion-ratio for evaluating fruit's health quality. Journal of Food Science 81:H2059−H2068

doi: 10.1111/1750-3841.13390
[10]

Villalobos-Gutiérrez MG, Schweiggert RM, Carle R, Esquivel P. 2012. Chemical characterization of Central American pitaya (Hylocereus sp.) seeds and seed oil. CyTA - Journal of Food 10:78−83

doi: 10.1080/19476337.2011.580063
[11]

Tenore GC, Novellino E, Basile A. 2012. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. Journal of Functional Foods 4:129−36

doi: 10.1016/j.jff.2011.09.003
[12]

García-Cruz L, Dueñas M, Santos-Buelgas C, Valle-Guadarrama S, Salinas-Moreno Y. 2017. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. Pruinosus and S. stellatus). Food Chemestry 234:111−18

doi: 10.1016/j.foodchem.2017.04.174
[13]

Tel-Zur N, Mizrahi Y, Cisneros A, Mouyal J, Schneider B, et al. 2011. Phenotypic and genomic characterization of vine cactus collection (Cactaceae). Genetic Resources and Crop Evolution 58:1075−85

doi: 10.1007/s10722-010-9643-8
[14]

Otálora MC, Wilches-Torres A, Gómez Castaño JA. 2023. Mucilage from yellow pitahaya (Selenicereus megalanthus) fruit peel: extraction, proximal analysis, and molecular characterization. Molecules 28:786

doi: 10.3390/molecules28020786
[15]

Chen JY, Xie FF, Cui YZ, Chen CB, Lu WJ, et al. 2021. A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis. Horticulture Research 8:164

doi: 10.1038/s41438-021-00612-0
[16]

Zheng J, Meinhardt LW, Goenaga R, Zhang D, Yin Y. 2021. The chromosome-level genome of dragon fruit reveals whole-genome duplication and chromosomal co-localization of betacyanin biosynthetic genes. Horticulture Research 8:63

doi: 10.1038/s41438-021-00501-6
[17]

Mou Z, Zeng R, Chen N, Liu Z, Zeng Z, et al. 2022. The association of HpDof1.7 and HpDof5.4 with soluble sugar accumulation in pitaya fruit by transcriptionally activating sugar metabolic genes. Food Quality and Safety 6:fyac042

doi: 10.1093/fqsafe/fyac042
[18]

Chen JY, Xie FF, Shah K, Chen CB, Zeng JM, et al. 2023. Identification of HubHLH family and key role of HubHLH159 in betalain biosynthesis by activating the transcription of HuADH1, HuCYP76AD1-1, and HuDODA1 in pitaya. Plant Science 328:111595

doi: 10.1016/j.plantsci.2023.111595
[19]

Wang Z, Wang M, Ding Y, Li T, Jiang S, et al. 2023. The pitaya flower tissue's gene differential expression analysis between self-incompatible and self-compatible varieties for the identification of genes involved in self-incompatibility regulation. International Journal of Molecular Sciences 24:11406

doi: 10.3390/ijms241411406
[20]

Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10:236−42

doi: 10.1016/j.tplants.2005.03.002
[21]

Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54:733−49

doi: 10.1111/j.1365-313X.2008.03447.x
[22]

Gandía-Herrero F, García-Carmona F. 2019. The dawn of betalains. New Phytologist 227:664−66

doi: 10.1111/nph.16295
[23]

Xie F, Hua Q, Chen C, Zhang Z, Zhang R, et al. 2021. Genome-wide characterization of R2R3-MYB transcription factors in pitaya reveals a R2R3-MYB repressor HuMYB1 involved in fruit ripening through regulation of betalain biosynthesis by repressing betalain biosynthesis-related genes. Cells 10:1949

doi: 10.3390/cells10081949
[24]

Jiang H, Zhang W, Li X, Shu C, Jiang W, et al. 2021. Nutrition, phytochemical profile, bioactivities and applications in food industry of pitaya (Hylocereus spp.) peels: a comprehensive review. Trends in Food Science & Technology 116:199−217

doi: 10.1016/j.jpgs.2021.06.040
[25]

Rahimi P, Abedimanesh S, Mesbah-Namin SA, Ostadrahimi A. 2019. Betalains, the nature-inspired pigments, in health and diseases. Critical Reviews in Food Science and Nutrition 59:2949−78

doi: 10.1080/10408398.2018.1479830
[26]

Weiss V, Okun Z, Shpigelman A. 2023. Utilization of hydrocolloids for the stabilization of pigments from natural sources. Current Opinion in Colloid & Interface Science 68:101756

doi: 10.1016/j.cocis.2023.101756
[27]

Rodriguez-Amaya DB. 2019. Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International 124:200−05

doi: 10.1016/j.foodres.2018.05.028
[28]

Sawicki T, Martinez-Villaluenga C, Frias J, Wiczkowski W, Peñas E, et al. 2019. The effect of processing and in vitro digestion on the betalain profile and ACE inhibition activity of red beetroot products. Journal of Functional Foods 55:229−37

doi: 10.1016/j.jff.2019.01.053
[29]

Jackman RL, Smith JL. 1996. Anthocyanins and betalains. In Natural Food Colorants, eds. Hendry GAF, Houghton JD. Boston, MA: Springer. pp. 244−309. doi: 10.1007/978-1-4615-2155-6_8

[30]

Rodrigues C, Souza VGL, Coelhoso I, Fernando AL. 2021. Bio-based sensors for smart food packaging—current applications and future trends. Sensors 21:2148

doi: 10.3390/s21062148
[31]

Wybraniec S, Stalica P, Jerz G, Klose B, Gebers N, et al. 2009. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography. Journal of Chromatography A 1216:6890−99

doi: 10.1016/j.chroma.2009.08.035
[32]

Stintzing FC, Conrad J, Klaiber I, Beifuss U, Carle R. 2004. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy. Phytochemistry 65:415−22

doi: 10.1016/j.phytochem.2003.10.029
[33]

Otalora C, Bonifazi E, Fissore E, Basanta F, Gerschenson L. 2020. Thermal stability of betalains in by-products of the blanching and cutting of Beta vulgaris L. var conditiva. Polish Journal of Food and Nutrition Sciences 70:15−24

doi: 10.31883/pjfns/116415
[34]

Muramatsu D, Muramatsu D, Uchiyama H, Higashi H, Kida H, et al. 2023. Effects of heat degradation of betanin in red beetroot (Beta vulgaris L.) on biological activity and antioxidant capacity. PLoS One 18:e0286255

doi: 10.1371/journal.pone.0286255
[35]

Chhikara N, Kushwaha K, Sharma P, Gat Y, Panghal A. 2019. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chemistry 272:192−200

doi: 10.1016/j.foodchem.2018.08.022
[36]

Reynoso R, Garcia FA, Morales D, Gonzalez de Mejia E. 1997. Stability of betalain pigments from a Cactacea fruit. Journal of Agricultural and Food Chemistry 45:2884−89

doi: 10.1021/jf960804r
[37]

Czapski J. 1990. Heat stability of betacyanins in red beet juice and in betanin solutions. Zeitschrift für Lebensmittel-Untersuchung und Forschung 191:275−78

doi: 10.1007/BF01202425
[38]

Khan MI, Giridhar P. 2014. Enhanced chemical stability, chromatic properties and regeneration of betalains in Rivina humilis L. berry juice. LWT - Food Science and Technology 58:649−57

doi: 10.1016/j.lwt.2014.03.027
[39]

Gandía-Herrero F, Escribano J, García-Carmona F. 2010. Structural implications on color, fluorescence, and antiradical activity in betalains. Planta 232:449−60

doi: 10.1007/s00425-010-1191-0
[40]

Khan MI. 2016. Stabilization of betalains: A review. Food Chemistry 197:1280−85

doi: 10.1016/j.foodchem.2015.11.043
[41]

Stintzing FC, Carle R. 2004. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology 15:19−38

doi: 10.1016/j.jpgs.2003.07.004
[42]

Kobayashi N, Schmidt J, Wray V, Schliemann W. 2001. Formation and occurrence of dopamine-derived betacyanins. Phytochemistry 56:429−36

doi: 10.1016/S0031-9422(00)00383-6
[43]

Sadowska-Bartosz I, Bartosz G. 2021. Biological Properties and Applications of Betalains. Molecules 26:2520

doi: 10.3390/molecules26092520
[44]

Huang AS, Von Elbe JH. 1987. Effect of pH on the degradation and regeneration of betanine. Journal of Food Science 52:1689−93

doi: 10.1111/j.1365-2621.1987.tb05907.x
[45]

von Elbe JH, Maing IY, Amundson CH. 1974. Color stability of betanin. Journal of Food Science 39:334−37

doi: 10.1111/j.1365-2621.1974.tb02888.x
[46]

Gill M. 1994. Pigments of fungi (macromycetes). Natural Product Reports 11:67−90

doi: 10.1039/np9941100067
[47]

Brockington SF, Walker RH, Glover BJ, Soltis PS, Soltis DE. 2011. Complex pigment evolution in the Caryophyllales. New Phytologist 190:854−64

doi: 10.1111/j.1469-8137.2011.03687.x
[48]

Contreras-Llano LE, Guerrero-Rubio MA, Lozada-Ramírez JD, García-Carmona F, Gandía-Herrero F, et al. 2019. First betalain-producing bacteria break the exclusive presence of the pigments in the plant kingdom. mBio 10:e00345−19

doi: 10.1128/mBio.00345-19
[49]

Kugler F, Stintzing FC, Carle R. 2004. Identification of betalains from petioles of differently colored Swiss chard (Beta vulgaris L. ssp. cicla [L.] Alef. Cv. Bright Lights) by high-performance liquid chromatography-electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry 52:2975−81

doi: 10.1021/jf035491w
[50]

Chang YC, Chiu YC, Tsao NW, Chou YL, Tan CM, et al. 2021. Elucidation of the core betalain biosynthesis pathway in Amaranthus tricolor. Scientific Reports 11:6086

doi: 10.1038/s41598-021-85486-x
[51]

Kumar SS, Manoj P, Nimisha G, Giridhar P. 2016. Phytoconstituents and stability of betalains in fruit extracts of Malabar spinach (Basella rubra L.). Journal of Food Science and Technology 53:4014−22

doi: 10.1007/s13197-016-2404-8
[52]

Polturak G, Heinig U, Grossman N, Battat M, Leshkowitz D, et al. 2018. Transcriptome and metabolic profiling provides insights into betalain biosynthesis and evolution in Mirabilis jalapa. Molecular Plant 11:189−204

doi: 10.1016/j.molp.2017.12.002
[53]

Timoneda A, Feng T, Sheehan H, Walker-Hale N, Pucker B, et al. 2019. The evolution of betalain biosynthesis in Caryophyllales. New Phytologist 224:71−85

doi: 10.1111/nph.15980
[54]

Pucker B, Walker-Hale N, Dzurlic J, Yim WC, Cushman JC, et al. 2023. Multiple mechanisms explain loss of anthocyanins from betalain-pigmented Caryophyllales, including repeated wholesale loss of a key anthocyanidin synthesis enzyme. New Phytologist 241:471−89

doi: 10.1111/nph.19341
[55]

Shimada S, Inoue YT, Sakuta M. 2005. Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species. The Plant Journal 44:950−59

doi: 10.1111/j.1365-313X.2005.02574.x
[56]

Clement JS, Mabry TJ. 1996. Pigment evolution in the Caryophyllales: a systematic overview*. Botanica Acta 109:360−67

doi: 10.1111/j.1438-8677.1996.tb00584.x
[57]

Brockington SF, Yang Y, Gandia-Herrero F, Covshoff S, Hibberd JM, et al. 2015. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytologist 207:1170−80

doi: 10.1111/nph.13441
[58]

Eichenberger M, Schwander T, Hüppi S, Kreuzer J, Mittl PRE, et al. 2023. The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis. Nature Catalysis 6:927−38

doi: 10.1038/s41929-023-01018-y
[59]

Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, et al. 2000. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proceedings of the National Academy of Sciences 97:13579−84

doi: 10.1073/pnas.250379897
[60]

Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF. 2004. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. The Plant Journal 40:22−34

doi: 10.1111/j.1365-313X.2004.02183.x
[61]

Hatlestad GJ, Akhavan NA, Sunnadeniya RM, Elam L, Cargile S, et al. 2015. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway. Nature Genetics 47:92−96

doi: 10.1038/ng.3163
[62]

Gandía-Herrero F, García-Carmona F. 2013. Biosynthesis of betalains: yellow and violet plant pigments. Trends in Plant Science 18:334−43

doi: 10.1016/j.tplants.2013.01.003
[63]

Wink M. 1997. Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. Advances in Botanical Research 25:141−69

doi: 10.1016/s0065-2296(08)60151-2
[64]

Polturak G, Aharoni A. 2018. "La Vie en Rose": Biosynthesis, sources, and applications of betalain pigments. Molecular Plant 11:7−22

doi: 10.1016/j.molp.2017.10.008
[65]

Guerrero-Rubio MA, Escribano J, Garcia-Carmona F, Gandia-Herrero F. 2020. Light emission in betalains: from fluorescent flowers to biotechnological applications. Trends in Plant Science 25:159−75

doi: 10.1016/j.tplants.2019.11.001
[66]

Mueller LA, Hinz U, Uzé M, Sautter C, Zryd JP. 1997. Biochemical complementation of the betalain biosynthetic pathway in Portulaca grandiflora by a fungal 3,4-dihydroxyphenylalanine dioxygenase. Planta 203:260−63

doi: 10.1007/s004250050190
[67]

Sasaki N, Abe Y, Goda Y, Adachi T, Kasahara K, Ozeki Y. 2009. Detection of DOPA 4, 5-dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa. Plant and Cell Physiology 50:1012−16

doi: 10.1093/pcp/pcp053
[68]

Nishihara M, Hirabuchi A, Goto F, Nishizaki Y, Uesugi S, et al. 2023. Production of yellow-flowered gentian plants by genetic engineering of betaxanthin pigments. New Phytologist 240:1177−88

doi: 10.1111/nph.19218
[69]

Kugler F, Stintzing FC, Carle R. 2007. Characterisation of betalain patterns of differently coloured inflorescences from Gomphrena globosa L. and Bougainvillea sp. by HPLC-DAD-ESI-MSn. Analytical and Bioanalytical Chemistry 387:637−48

doi: 10.1007/s00216-006-0897-0
[70]

Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, et al. 2017. The genome of Chenopodium quinoa. Nature 542:307−12

doi: 10.1038/nature21370
[71]

Sutor K, Wybraniec S. 2020. Identification and determination of betacyanins in fruit extracts of melocactus species. Journal of Agricultural and Food Chemistry 68:11459−67

doi: 10.1021/acs.jafc.0c04746
[72]

Kumorkiewicz-Jamro A, Świergosz T, Sutor K, Spórna-Kucab A, Wybraniec S. 2021. Multi-colored shades of betalains: recent advances in betacyanin chemistry. Natural Product Reports 38:2315−46

doi: 10.1039/D1NP00018G
[73]

Khan MI, Giridhar P. 2015. Plant betalains: chemistry and biochemistry. Phytochemistry 117:267−95

doi: 10.1016/j.phytochem.2015.06.008
[74]

Cai Y, Sun M, Corke H. 2001. Identification and distribution of simple and acylated betacyanins in the Amaranthaceae. Journal of Agricultural and Food Chemistry 49:1971−78

doi: 10.1021/jf000963h
[75]

Lystvan K, Kumorkiewicz A, Szneler E, Wybraniec S. 2018. Study on betalains in Celosia cristata Linn. callus culture and identification of new malonylated amaranthins. Journal of Agricultural and Food Chemistry 66:3870−79

doi: 10.1021/acs.jafc.8b01014
[76]

Spórna-Kucab A, Kumorkiewicz A, Szmyr N, Szneler E, Wybraniec S. 2019. Separation of betacyanins from flowers of Amaranthus cruentus L. in a polar solvent system by high-speed counter-current chromatography. Journal of Separation Science 42:1676−85

doi: 10.1002/jssc.201801172
[77]

Gandía-Herrero F, Cabanes J, Escribano J, García-Carmona F, Jiménez-Atiénzar M. 2013. Encapsulation of the most potent antioxidant betalains in edible matrixes as powders of different colors. Journal of Agricultural and Food Chemistry 61:4294−302

doi: 10.1021/jf400337g
[78]

Hua Q, Chen C, Chen Z, Chen P, Ma Y, et al. 2015. Transcriptomic analysis reveals key genes related to betalain biosynthesis in pulp coloration of Hylocereus polyrhizus. Frontiers in Plant Science 6:1179

doi: 10.3389/fpls.2015.01179
[79]

Lopez-Nieves S, Yang Y, Timoneda A, Wang M, Feng T, et al. 2018. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales. New Phytologist 217:896−908

doi: 10.1111/nph.14822
[80]

Steglich W, Strack D. 1990. Betalains. In The Alkaloids: Chemistry and Pharmacology, ed. Brossi A. Vol. 39. USA: Academic Press. pp. 1−62. doi: 10.1016/s0099-9598(08)60163-7

[81]

Harris NN, Javellana J, Davies KM, Lewis DH, Jameson PE, et al. 2012. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biology 12:34

doi: 10.1186/1471-2229-12-34
[82]

Hua Q, Chen C, Xie F, Zhang Z, Zhang R, et al. 2021. A genome-wide identification study reveals that HmoCYP76AD1, HmoDODAα1 and HmocDOPA5GT involved in betalain biosynthesis in Hylocereus. Genes 12:1858

doi: 10.3390/genes12121858
[83]

Carreón-Hidalgo JP, Franco-Vásquez DC, Gómez-Linton DR, Pérez-Flores LJ. 2022. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Research International 151:110821

doi: 10.1016/j.foodres.2021.110821
[84]

Wybraniec S. 2005. Formation of Decarboxylated betacyanins in heated purified betacyanin fractions from red beet root (Beta vulgaris L.) monitored by LC−MS/MS. Journal of Agricultural and Food Chemistry 53:3483−87

doi: 10.1021/jf048088d
[85]

Wybraniec S, Mizrahi Y. 2005. Generation of decarboxylated and dehydrogenated betacyanins in thermally treated purified fruit extract from purple pitaya (Hylocereus polyrhizus) monitored by LC-MS/MS. Journal of Agricultural and Food Chemistry 53:6704−12

doi: 10.1021/jf050700t
[86]

Cheng MN, Huang ZJ, Hua QZ, Shan W, Kuang JF, et al. 2017. The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit (Hylocereus polyrhizus). Horticulture Research 4:17039

doi: 10.1038/hortres.2017.39
[87]

Xu M, Liu CL, Fu Y, Liao ZW, Guo PY, et al. 2020. Molecular characterization and expression analysis of pitaya (Hylocereus polyrhizus) HpLRR genes in response to Neoscytalidium dimidiatum infection. BMC Plant Biology 20:160

doi: 10.1186/s12870-020-02368-6
[88]

Zhang L, Chen C, Xie F, Hua Q, Zhang Z, et al. 2021. A novel WRKY transcription factor HmoWRKY40 associated with betalain biosynthesis in pitaya (Hylocereus monacanthus) through regulating HmoCYP76AD1. International Journal of Molecular Sciences 22:2171

doi: 10.3390/ijms22042171
[89]

Zhang Y, Xu Y, Huang D, Xing W, Wu B, et al. 2022. Research progress on the MYB transcription factors in tropical fruit. Tropical Plants 1:5

doi: 10.48130/tp-2022-0005
[90]

McClure B, Cruz-García F, Romero C. 2011. Compatibility and incompatibility in S-RNase-based systems. Annals of Botany 108:647−58

doi: 10.1093/aob/mcr179
[91]

Igic B, Lande R, Kohn Joshua R. 2008. Loss of self-incompatibility and its evolutionary consequences. International Journal of Plant Sciences 169:93−104

doi: 10.1086/523362
[92]

Fujii S, Kubo KI, Takayama S. 2016. Non-self- and self-recognition models in plant self-incompatibility. Nature Plants 2:16130

doi: 10.1038/nplants.2016.130
[93]

Cocker JM, Wright J, Li J, Swarbreck D, Dyer S, et al. 2018. Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene. Scientific Reports 8:17942

doi: 10.1038/s41598-018-36304-4
[94]

Hiscock SJ, McInnis SM. 2003. Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends in Plant Science 8:606−13

doi: 10.1016/j.tplants.2003.10.007
[95]

Nasrallah JB. 2019. Self-incompatibility in the Brassicaceae: Regulation and mechanism of self-recognition. In Plant Development and Evolution, ed. Grossniklaus U. UK: Academic Press. pp. 435−52. doi: https://doi.org/10.1016/bs.ctdb.2018.10.002

[96]

Hiscock SJ, Tabah DA. 2003. The different mechanisms of sporophytic self-incompatibility. Philosophical Transactions of the Royal Society B: Biological Sciences 358:1037−45

doi: 10.1098/rstb.2003.1297
[97]

Puerta AR, Ushijima K, Koba T, Sassa H. 2009. Identification and functional analysis of pistil self-incompatibility factor HT-B of Petunia. Journal of Experimental Botany 60:1309−18

doi: 10.1093/jxb/erp005
[98]

Bilinski P, Kohn J. 2012. Sites of self-pollen tube inhibition in Papaveraceae (sensu lato). Plant Systematics and Evolution 298:1239−47

doi: 10.1007/s00606-012-0630-8
[99]

De Franceschi P, Dondini L, Sanzol J. 2012. Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). Journal of Experimental Botany 63:4015−32

doi: 10.1093/jxb/ers108
[100]

Liang M, Cao Z, Zhu A, Liu Y, Tao M, et al. 2020. Evolution of self-compatibility by a mutant Sm-RNase in citrus. Nature Plants 6:131−42

doi: 10.1038/s41477-020-0597-3
[101]

Niu SC, Huang J, Zhang YQ, Li PX, Zhang GQ, et al. 2017. Lack of S-RNase-based gametophytic self-incompatibility in orchids suggests that this system evolved after the monocot-eudicot split. Frontiers in Plant Science 8:1106

doi: 10.3389/fpls.2017.01106
[102]

Lv S, Qiao X, Zhang W, Li Q, Wang P, et al. 2022. The origin and evolution of RNase T2 family and gametophytic self-incompatibility system in plants. Genome Biology and Evolution 14:evac093

doi: 10.1093/gbe/evac093
[103]

Zhang D, Li YY, Zhao X, Zhang C, Liu DK, et al. 2024. Molecular insights into self-incompatibility systems: From evolution to breeding. Plant Communications 5:100719

doi: 10.1016/j.xplc.2023.100719
[104]

Bentov I, Lee C, Mizrahi A, Rosenfeld M. 2014. Proof of activity: extending bitcoin's proof of work via proof of stake. ACM SIGMETRICS Performance Evaluation Review 42:34−37

doi: 10.1145/2695533.2695545
[105]

Qu H, Guan Y, Wang Y, Zhang S. 2017. PLC-mediated signaling pathway in pollen tubes regulates the gametophytic self-incompatibility of Pyrus species. Frontiers in Plant Science 8:1164

doi: 10.3389/fpls.2017.01164
[106]

Del Ángel-Pérez AL, Nataren-Velázquez J, Megchun Garcia JV, Villagómez-del-Ángel TE, Ayala-Garay AV. 2022. Flowering in Hylocereus spp.: comparative analysis and self-incompatibility. Agro Productividad 15(8):2259

doi: 10.32854/agrop.v15i8.2259
[107]

Lichtenzveig J, Abbo S, Nerd A, Tel-Zur N, Mizrahi Y. 2000. Cytology and mating systems in the climbing cacti Hylocereus and Selenicereus. American Journal of Botany 87:1058−65

doi: 10.2307/2657005
[108]

Renfiyeni R. 2018. The effect of pollination models on yield of red pitaya (Hylocereus polyrhizus). JERAMI Indonesian Journal of Crop Science 1:19−24

doi: 10.25077/jijcs.1.1.19-24.2018
[109]

Chen J, Yuan Y, Xie F, Zhang Z, Chen J, et al. 2022. Metabolic profiling of organic acids reveals the involvement of HuIPMS2 in citramalic acid synthesis in pitaya. Horticulturae 8:167

doi: 10.3390/horticulturae8020167
[110]

Hua Q, Zhou Q, Gan S, Wu J, Chen C, et al. 2016. Proteomic analysis of Hylocereus polyrhizus reveals metabolic pathway changes. International Journal of Molecular Sciences 17:1606

doi: 10.3390/ijms17101606
[111]

Li X, Li B, Guan S, Cai L, Pang X. 2021. Hub genes and sub-networks of stoma-related genes in Hylocereus undatus through trypsin treatment during storage revealed by transcriptomic analysis. Journal of Food Biochemistry 45:e13538

doi: 10.1111/jfbc.13538
[112]

Li X, Li B, Gu S, Pang X, Mason P, et al. 2024. Single-cell and spatial RNA sequencing reveal the spatiotemporal trajectories of fruit senescence. Nature Communications 15:3108

doi: 10.1038/s41467-024-47329-x
[113]

Pang X, Sun J, Jia J, Trusov Y, Chandora R, et al. 2024. Integration of single-cell and spatial RNA sequencing uncovers spatiotemporal transition of fruit senescence trajectory from exocarp to mesocarp in Pitaya (Hylocereus undatus). Postharvest Biology and Technology 213:112954

doi: 10.1016/j.postharvbio.2024.112954
[114]

Xiong R, Liu C, Xu M, Wei SS, Huang JQ, et al. 2020. Transcriptomic analysis of flower induction for long-day pitaya by supplementary lighting in short-day winter season. BMC Genomics 21:329

doi: 10.1186/s12864-020-6726-6
[115]

Wu Y, Xu J, Han X, Qiao G, Yang K, et al. 2020. Comparative transcriptome analysis combining SMRT- and Illumina-based RNA-Seq identifies potential candidate genes involved in betalain biosynthesis in pitaya fruit. International Journal of Molecular Sciences 21:3288

doi: 10.3390/ijms21093288
[116]

Nong Q, Zhang M, Chen J, Zhang M, Cheng H, et al. 2019. RNA-Seq de novo assembly of red pitaya (Hylocereus polyrhizus) roots and differential transcriptome analysis in response to salt stress. Tropical Plant Biology 12:55−66

doi: 10.1007/s12042-019-09217-3
[117]

Li X, Li B, Min D, Ji N, Zhang X, et al. 2021. Transcriptomic analysis reveals key genes associated with the biosynthesis regulation of phenolics in fresh-cut pitaya fruit (Hylocereus undatus). Postharvest Biology and Technology 181:111684

doi: 10.1016/j.postharvbio.2021.111684
[118]

Xu M, Liu CL, Luo J, Qi Z, Yan Z, et al. 2019. Transcriptomic de novo analysis of pitaya (Hylocereus polyrhizus) canker disease caused by Neoscytalidium dimidiatum. BMC Genomics 20:10

doi: 10.1186/s12864-018-5343-0
[119]

Zhang HB. 2024. Gene-based Breeding (GBB), a novel discipline of biological science and technology for plant and animal breeding. Tropical Plants 3:e005

doi: 10.48130/tp-0024-0005
[120]

Zhu Z, Johnson J, Zaman QU, Wang H. 2022. Challenges and opportunities to improve tropical fruits in Hainan, China. Tropical Plants 1:13

doi: 10.48130/tp-2022-0013