[1] |
Wang J, Mei J, Ren G. 2019. Plant microRNAs: biogenesis, homeostasis, and degradation. Frontiers in Plant Science 10:360 doi: 10.3389/fpls.2019.00360 |
[2] |
Xu Y, Chen X. 2023. microRNA biogenesis and stabilization in plants. Fundamental Research 3:707−17 doi: 10.1016/j.fmre.2023.02.023 |
[3] |
Park W, Li J, Song R, Messing J, Chen X. 2002. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology 12:1484−95 doi: 10.1016/S0960-9822(02)01017-5 |
[4] |
Han MH, Goud S, Song L, Fedoroff N. 2004. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proceedings of the National Academy of Sciences of the United States of America 101:1093−98 doi: 10.1073/pnas.0307969100 |
[5] |
Yang L, Liu Z, Lu F, Dong A, Huang H. 2006. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. The Plant Journal 47:841−50 doi: 10.1111/j.1365-313X.2006.02835.x |
[6] |
Yu B, Yang Z, Li J, Minakhina S, Yang M, et al. 2005. Methylation as a crucial step in plant microRNA biogenesis. Science 307:932−35 doi: 10.1126/science.1107130 |
[7] |
Nodine MD, Bartel DP. 2010. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes & Development 24:2678−92 doi: 10.1101/gad.1986710 |
[8] |
Seefried WF, Willmann MR, Clausen RL, Jenik PD. 2014. Global regulation of embryonic patterning in Arabidopsis by microRNAs. Plant Physiology 165:670−87 doi: 10.1104/pp.114.240846 |
[9] |
Armenta-Medina A, Lepe-Soltero D, Xiang D, Datla R, Abreu-Goodger C, et al. 2017. Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote. Developmental Biology 431:145−51 doi: 10.1016/j.ydbio.2017.09.009 |
[10] |
Robinson-Beers K, Pruitt RE, Gasser CS. 1992. Ovule development in wild-type Arabidopsis and two female-sterile mutants. The Plant Cell 4:1237−49 doi: 10.2307/3869410 |
[11] |
Wei SJ, Chai S, Zhu RM, Duan CY, Zhang Y, et al. 2020. HUA ENHANCER1 mediates ovule development. Frontiers in Plant Science 11:397 doi: 10.3389/fpls.2020.00397 |
[12] |
Hafidh S, Honys D. 2021. Reproduction multitasking: the male gametophyte. Annual Review of Plant Biology 72:581−614 doi: 10.1146/annurev-arplant-080620-021907 |
[13] |
Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, et al. 2012. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194−205 doi: 10.1016/j.cell.2012.09.001 |
[14] |
Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, et al. 2012. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360−64 doi: 10.1126/science.1224839 |
[15] |
He S, Vickers M, Zhang J, Feng X. 2019. Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. eLife 8:e42530 doi: 10.7554/eLife.42530 |
[16] |
Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, et al. 2020. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nature Cell Biology 22:621−29 doi: 10.1038/s41556-020-0515-y |
[17] |
Osakabe A, Jamge B, Axelsson E, Montgomery SA, Akimcheva S, et al. 2021. The chromatin remodeler DDM1 prevents transposon mobility through deposition of histone variant H2A. W. Nature Cell Biology 23:391−400 doi: 10.1038/s41556-021-00658-1 |
[18] |
Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, et al. 2009. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461−72 doi: 10.1016/j.cell.2008.12.038 |
[19] |
Martínez G, Panda K, Köhler C, Slotkin RK. 2016. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nature Plants 2:16030 doi: 10.1038/nplants.2016.30 |
[20] |
Wu W, Zheng B. 2019. Intercellular delivery of small RNAs in plant gametes. New Phytologist 224:86−90 doi: 10.1111/nph.15854 |
[21] |
Wu W, Li L, Zhao Y, Zhao Y, Jiang T, et al. 2021. Heterochromatic silencing is reinforced by ARID1-mediated small RNA movement in Arabidopsis pollen. New Phytologist 229:3269−80 doi: 10.1111/nph.16871 |
[22] |
Pachamuthu K, Simon M, Borges F. 2024. Targeted suppression of siRNA biogenesis in Arabidopsis pollen promotes triploid seed viability. Nature Communications 15:4612 doi: 10.1038/s41467-024-48950-6 |
[23] |
Creasey KM, Zhai J, Borges F, Van Ex F, Regulski M, et al. 2014. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508:411−15 doi: 10.1038/nature13069 |
[24] |
Martinez G, Köhler C. 2017. Role of small RNAs in epigenetic reprogramming during plant sexual reproduction. Current Opinion in Plant Biology 36:22−28 doi: 10.1016/j.pbi.2016.12.006 |
[25] |
Oliver C, Annacondia ML, Wang Z, Jullien PE, Slotkin RK, et al. 2022. The miRNome function transitions from regulating developmental genes to transposable elements during pollen maturation. The Plant Cell 34:784−801 doi: 10.1093/plcell/koab280 |
[26] |
Borges F, Parent JS, van Ex F, Wolff P, Martínez G, et al. 2018. Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nature Genetics 50:186−92 doi: 10.1038/s41588-017-0032-5 |
[27] |
Zheng B, Chen X, McCormick S. 2011. The anaphase-promoting complex is a dual integrator that regulates both microRNA-mediated transcriptional regulation of Cyclin B1 and degradation of Cyclin B1 during Arabidopsis male gametophyte development. The Plant Cell 23:1033−46 doi: 10.1105/tpc.111.083980 |
[28] |
Chen W, Jia PF, Yang WC, Li HJ. 2020. Plasma membrane H+-ATPases-mediated cytosolic proton gradient regulates pollen tube growth. Journal of Integrative Plant Biology 62:1817−22 doi: 10.1111/jipb.12981 |
[29] |
Del Toro-De León G, García-Aguilar M, Gillmor CS. 2014. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature 514:624−27 doi: 10.1038/nature13620 |
[30] |
Zhao Y, Wang S, Wu W, Li L, Jiang T, et al. 2018. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis. Nature Communications 9:5011 doi: 10.1038/s41467-018-07429-x |
[31] |
Okada T, Endo M, Singh MB, Bhalla PL. 2005. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. The Plant Journal 44:557−68 doi: 10.1111/j.1365-313X.2005.02554.x |
[32] |
Misra CS, Sousa AGG, Barros PM, Kermanov A, Becker JD. 2023. Cell-type-specific alternative splicing in the Arabidopsis germline. Plant Physiology 192:85−101 doi: 10.1093/plphys/kiac574 |
[33] |
Fang Y, Spector DL. 2007. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Current Biology 17:818−23 doi: 10.1016/j.cub.2007.04.005 |
[34] |
Grant-Downton R, Kourmpetli S, Hafidh S, Khatab H, Le Trionnaire G, et al. 2013. Artificial microRNAs reveal cell-specific differences in small RNA activity in pollen. Current Biology 23:R599−601 doi: 10.1016/j.cub.2013.05.055 |
[35] |
Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, et al. 2009. Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485−88 doi: 10.1126/science.1167784 |
[36] |
Gòdia M, Swanson G, Krawetz SA. 2018. A history of why fathers' RNA matters. Biology of Reproduction 99:147−59 doi: 10.1093/biolre/ioy007 |
[37] |
Borg M, Berger F. 2015. Chromatin remodelling during male gametophyte development. The Plant Journal 83:177−88 doi: 10.1111/tpj.12856 |
[38] |
Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD. 2011. MicroRNA activity in the Arabidopsis male germline. Journal of Experimental Botany 62:1611−20 doi: 10.1093/jxb/erq452 |