[1] |
Voytas DF, Gao C. 2014. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biology 12:e1001877 doi: 10.1371/journal.pbio.1001877 |
[2] |
Bortesi L, Fischer R. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33:41−52 doi: 10.1016/j.biotechadv.2014.12.006 |
[3] |
Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, et al. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications 7:12617 doi: 10.1038/ncomms12617 |
[4] |
Kim S, Kim D, Cho SW, Kim J, Kim JS. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research 24:1012−19 doi: 10.1101/gr.171322.113 |
[5] |
Jones HD. 2015. Regulatory uncertainty over genome editing. Nature Plants 1:14011 doi: 10.1038/nplants.2014.11 |
[6] |
Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, et al. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology 33:1162−64 doi: 10.1038/nbt.3389 |
[7] |
Kanchiswamy CN, Malnoy M, Velasco R, Kim JS, Viola R. 2015. Non-GMO genetically edited crop plants. Trends in Biotechnology 33:489−91 doi: 10.1016/j.tibtech.2015.04.002 |
[8] |
Sun C, Xie Y, Li Z, Liu Y, Sun X, et al. 2022. The Larix kaempferi genome reveals new insights into wood properties. Journal of Integrative Plant Biology 64:1364−73 doi: 10.1111/jipb.13265 |
[9] |
Pak S, Li C. 2022. Progress and challenges in applying CRISPR/Cas techniques to the genome editing of trees. Forestry Research 2:6 doi: 10.48130/FR-2022-0006 |
[10] |
Li B, Sun C, Li J, Gao C. 2024. Targeted genome-modification tools and their advanced applications in crop breeding. Nature Reviews Genetics 25:603−22 doi: 10.1038/s41576-024-00720-2 |
[11] |
Hooghvorst I, López-Cristoffanini C, Nogués S. 2019. Efficient knockout of phytoene desaturase gene using CRISPR/Cas9 in melon. Scientific Reports 9:17077 doi: 10.1038/s41598-019-53710-4 |
[12] |
Ma M, Wang X, Zhang C, Pak S, Wu H, et al. 2023. Enhancing the cryopreservation system of larch embryogenic culture by optimizing pre-culture, osmoprotectants, and rapid thawing. Forests 14:1621 doi: 10.3390/f14081621 |
[13] |
Wang W, Li C, Yang J, Zhang H, Zhang S. 2009. Somatic embryogenesis and plantlet regeneration from immature zygotic embryos of hybrid larch. Scientia Silvae Sinicae 12:34−38 doi: 10.3321/j.issn:1001-7488.2009.08.006 |
[14] |
Gupta PK, Durzan DJ. 1986. Plantlet regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea abies(Norway spruce). In Vitro Cellular & Developmental Biology 22:685−88 doi: 10.1007/BF02623484 |
[15] |
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15:473−97 doi: 10.1111/j.1399-3054.1962.tb08052.x |
[16] |
Wang Y, Zeng J, Su P, Zhao H, Li L, et al. 2022. An established protocol for generating transgenic wheat for wheat functional genomics via particle bombardment. Frontiers in Plant Science 13:979540 doi: 10.3389/fpls.2022.979540 |
[17] |
Li M, Wang D, Long X, Hao Z, Lu Y, et al. 2022. Agrobacterium-mediated genetic transformation of embryogenic callus in a Liriodendron hybrid (L. Chinense × L. Tulipifera). Frontiers in Plant Science 13:802128 doi: 10.3389/fpls.2022.802128 |
[18] |
Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols 1:2320−25 doi: 10.1038/nprot.2006.384 |
[19] |
Li D, Yu S, Zeng M, Liu X, Yang J, et al. 2020. Selection and validation of appropriate reference genes for realtime quantitative PCR analysis in needles of Larix olgensis under abiotic stresses. Forests 11:193 doi: 10.3390/f11020193 |
[20] |
Liu H, Ding Y, Zhou Y, Jin W, Xie K, et al. 2017. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Molecular Plant 10:530−32 doi: 10.1016/j.molp.2017.01.003 |
[21] |
Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. 2008. The Vienna RNA Websuite. Nucleic Acids Research 36:W70−W74 doi: 10.1093/nar/gkn188 |
[22] |
Housden BE, Valvezan AJ, Kelley C, Sopko R, Hu Y, et al. 2015. Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Science Signaling 8:rs9 doi: 10.1126/scisignal.aab3729 |
[23] |
Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096 doi: 10.1126/science.1258096 |
[24] |
Liang Z, Chen K, Zhang Y, Liu J, Yin K, et al. 2018. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nature Protocols 13:413−30 doi: 10.1038/nprot.2017.145 |
[25] |
Subburaj S, Chung SJ, Lee C, Ryu SM, Kim DH, et al. 2016. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Reports 35:1535−44 doi: 10.1007/s00299-016-1937-7 |
[26] |
Zhao H, Zhang J, Zhao J, Niu S. 2024. Genetic transformation in conifers: current status and future prospects. Forestry Research 4:e010 doi: 10.48130/forres-0024-0007 |
[27] |
Mahmoud LM, Kaur P, Stanton D, Grosser JW, Dutt M. 2022. A cationic lipid mediated CRISPR/Cas9 technique for the production of stable genome edited citrus plants. Plant Methods 18:33 doi: 10.1186/s13007-022-00870-6 |
[28] |
Yao T, Yuan G, Lu H, Liu Y, Zhang J, et al. 2023. CRISPR/Cas9-based gene activation and base editing in Populus. Horticulture Research 10:uhad085 doi: 10.1093/hr/uhad085 |
[29] |
Fan Y, Xin S, Dai X, Yang X, Huang H, et al. 2020. Efficient genome editing of rubber tree (Hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Industrial Crops and Products 146:112146 doi: 10.1016/j.indcrop.2020.112146 |
[30] |
Pavese V, Moglia A, Abbà S, Milani AM, Torello Marinoni D, et al. 2022. First report on genome editing via ribonucleoprotein (RNP) in Castanea sativa Mill. International Journal of Molecular Sciences 23:5762 doi: 10.3390/ijms23105762 |
[31] |
Poovaiah C, Phillips L, Geddes B, Reeves C, Sorieul M, et al. 2021. Genome editing with CRISPR/Cas9 in Pinus radiata (D. Don). BMC Plant Biolog 21:363 doi: 10.1186/s12870-021-03143-x |
[32] |
Cui Y, Zhao J, Gao Y, Zhao R, Zhang J, et al. 2021. Efficient multi-sites genome editing and plant regeneration via somatic embryogenesis in Picea glauca. Frontiers in Plant Science 12:751891 doi: 10.3389/fpls.2021.751891 |
[33] |
Liu Y, Wang Y, Xu S, Tang X, Zhao J, et al. 2019. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis. Plant Biotechnology Journal 17:2143−52 doi: 10.1111/pbi.13128 |
[34] |
An Y, Geng Y, Yao J, Fu C, Lu M, et al. 2020. Efficient genome editing in Populus using CRISPR/Cas12a. Frontiers in Plant Science 11:593938 doi: 10.3389/fpls.2020.593938 |
[35] |
Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology 33:187−97 doi: 10.1038/nbt.3117 |
[36] |
Pallarès Masmitjà M, Knödlseder N, Güell M. 2019. CRISPR-gRNA design. In CRISPR Gene Editing, ed. Luo Y. New York, NY: Humana Press. 1961:3–11. doi: 10.1007/978-1-4939-9170-9_1 |
[37] |
Park SC, Park S, Jeong YJ, Lee SB, Pyun JW, et al. 2019. DNA-free mutagenesis of GIGANTEA in Brassica oleracea var. capitata using CRISPR/Cas9 ribonucleoprotein complexes. Plant Biotechnology Reports 13:483−89 doi: 10.1007/s11816-019-00585-6 |
[38] |
Nanasato Y, Mikami M, Futamura N, Endo M, Nishiguchi M, et al. 2021. CRISPR/Cas9-mediated targeted mutagenesis in Japanese cedar (Cryptomeria japonica D. Don). Scientific Reports 11:16186 doi: 10.1038/s41598-021-95547-w |
[39] |
Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R. 2018. Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Reports 37:575−86 doi: 10.1007/s00299-018-2252-2 |
[40] |
Mercx S, Tollet J, Magy B, Navarre C, Boutry M. 2016. Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells. Frontiers in Plant Science 7:40 doi: 10.3389/fpls.2016.00040 |
[41] |
Xiang G, Zhang X, An C, Cheng C, Wang H. 2017. Temperature effect on CRISPR-Cas9 mediated genome editing. Journal of Genetics and Genomics 44:199−205 doi: 10.1016/j.jgg.2017.03.004 |