[1] |
Mebarki A, Laribi A. 2008. Evaluation post-sismique des dommages structuraux: méthodologie probabiliste. Risques Naturels et technologiques, eds. Mebarki A, Genatios C, Lafuente M. Paris: Presses de l'Ecole Nationale des Ponts et Chaussées. pp. 155−72 |
[2] |
Mébarki A, Valencia N, Salagnac JL, Barroca B. 2012. Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale. Natural Hazards and Earth System Sciences 12(5):1799−809 doi: 10.5194/nhess-12-1799-2012 |
[3] |
Mebarki A, Boukri M, Laribi A, Farsi M, Belazougui M, et al. 2014. Seismic vulnerability: Theory and application to Algerian buildings. Journal of Seismology 18(2):331−43 doi: 10.1007/s10950-013-9377-0 |
[4] |
Mebarki A, Jerez S, Prodhomme G, Reimeringer M. 2016. Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanks. Geomatics, Natural Hazards and Risk 7(sup1):5−17 doi: 10.1080/19475705.2016.1181458 |
[5] |
Mebarki A. 2017. Resilience: theory and metrics – a metal structure as demonstrator. Engineering Structures 138:425−33 doi: 10.1016/j.engstruct.2017.02.026 |
[6] |
Mebarki A. 2017. Safety of atmospheric industrial tanks: fragility, resilience and recovery functions. Journal of Loss Prevention in the Process Industries 49:590−602 doi: 10.1016/j.jlp.2017.06.007 |
[7] |
Allali SA, Abed M, Mebarki A. 2018. Post-earthquake assessment of buildings damage using fuzzy logic. Engineering Structures 166:117−27 doi: 10.1016/j.engstruct.2018.03.055 |
[8] |
Boukri M, Farsi MN, Mebarki A, Belazougui M. 2013. Development of an integrated approach for Algerian building seismic damage assessment. Structural Engineering and Mechanics 47(4):471−93 doi: 10.12989/sem.2013.47.4.471 |
[9] |
Boukri M, Farsi MN, Mebarki A, Belazougui M, Amellal O, et al. 2014. Seismic risk and damage prediction: case of the buildings in Constantine city (Algeria). Bulletin of Earthquake Engineering 12(6):2683−704 doi: 10.1007/s10518-014-9594-0 |
[10] |
Boukri M, Farsi MN, Mebarki A, Belazougui M, Ait-Belkacem M, et al. 2018. Seismic vulnerability assessment at urban scale: case of Algerian buildings. International Journal of Disaster Risk Reduction 31:555−75 doi: 10.1016/j.ijdrr.2018.06.014 |
[11] |
Mazumder RK, Salman AM. 2019. Seismic damage assessment using RADIUS and GIS: a case study of Sylhet City, Bangladesh. International Journal of Disaster Risk Reduction 34:243−54 doi: 10.1016/j.ijdrr.2018.11.023 |
[12] |
Noura H, Mebarki A, Abed M. 2019. Post-quake structural damage evaluation by neural networks: theory and calibration. European Journal of Environmental and Civil Engineering 23:710−27 doi: 10.1080/19648189.2017.1304277 |
[13] |
Mergos PE, Kappos AJ. 2010. Seismic damage analysis including inelastic shear–flexure interaction. Bulletin of Earthquake Engineering 8:27−46 doi: 10.1007/s10518-009-9161-2 |
[14] |
Morfidis K, Kostinakis K. 2018. Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks. Engineering Structures 165:120−41 doi: 10.1016/j.engstruct.2018.03.028 |
[15] |
Pinto A, Verzeletti G, Javier M, Humberto V, Rui P, et al. 2002. Pseudo-dynamic tests on non-seismic resisting RC frames (bare and selective retrofit frames). Ispra, Italy: E.L.f.S. Assessment. |
[16] |
Haselton CB, Deierlein GG. 2007. Assessing seismic collapse safety of modern reinforced concrete moment-frame buildings. Technical Report, PEER Report 2007−08. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA. https://peer.berkeley.edu/sites/default/files/web_peer708_curt_b._haselton_gregory_g._deierlein.pdf |
[17] |
Mazzoni S, McKenna F, Scott MH, Fenves GL, et al. 2006. The open system for earthquake engineering simulation (OpenSEES): user command-language manual. Pacific Earthquake Engineering Research (PEER) Center, University of California, Berkeley. Vol. 2006. https://opensees.berkeley.edu/wiki/index.php/OpenSees_Users_Manual |
[18] |
Kappos AJ, Stylianidis KC, Pitilakis K. 1998. Development of seismic risk scenarios based on a hybrid method of vulnerability assessment. Natural Hazards 17(2):177−92 doi: 10.1023/A:1008083021022 |
[19] |
Benbokhari A, Chikh B, Mébarki A. 2024. Seismic response prediction using a hybrid unsupervised and supervised machine learning in case of 3D RC frame buildings. Research on Engineering Structures and Materials doi: 10.17515/resm2024.137me1229rs |
[20] |
Benbokhari A, Chikh B, Mébarki A. 2023. Dynamic response estimation of an equivalent single degree of freedom system using artificial neural network and nonlinear static procedure. Research on Engineering Structures and Materials 10(2):431−44 doi: 10.17515/resm2023.40me0818rs |
[21] |
Boukri M, Farsi MN, Mebarki A. 2023. Rapid earthquake loss estimation model for Algerian urban heritage: case of Blida city. International Journal of Architectural Heritage 17(4):635−60 doi: 10.1080/15583058.2021.1958394 |
[22] |
Smail T, Abed M, Mebarki A, Lazecky M. 2022. Earthquake-induced landslide monitoring and survey by means of InSAR. Natural Hazards and Earth System Sciences 22(5):1609−25 doi: 10.5194/nhess-22-1609-2022 |
[23] |
Derbal I, Bourahla N, Mebarki A, Bahar R. 2017. Neural network-based prediction of ground time history responses. European Journal of Environmental and Civil Engineering 24:123−40 doi: 10.1080/19648189.2017.1367727 |