[1]

Chen L, Liu YG. 2014. Male sterility and fertility restoration in crops. Annual Review of Plant Biology 65:579−606

doi: 10.1146/annurev-arplant-050213-040119
[2]

Hanson MR. 1991. Plant mitochondrial mutations and male sterility. Annual Review of Genetics 25:461−86

doi: 10.1146/annurev.ge.25.120191.002333
[3]

Kubo T, Kitazaki K, Matsunaga M, Kagami H, Mikami T. 2011. Male sterility-inducing mitochondrial genomes: how do they differ? Critical Reviews in Plant Sciences 30:378−400

doi: 10.1080/07352689.2011.587727
[4]

Luo D, Xu H, Liu Z, Guo J, Li H, et al. 2013. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nature Genetics 45:573−77

doi: 10.1038/ng.2570
[5]

Okazaki M, Kazama T, Murata H, Motomura K, Toriyama K. 2013. Whole mitochondrial genome sequencing and transcriptional analysis to uncover an RT102-type cytoplasmic male sterility-associated candidate gene derived from Oryza rufipogon. Plant and Cell Physiology 54:1560−68

doi: 10.1093/pcp/pct102
[6]

Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, et al. 2004. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L. ). The Plant Journal 37:315−25

doi: 10.1046/j.1365-313X.2003.01961.x
[7]

Peng X, Wang K, Hu C, Zhu Y, Wang T, et al. 2010. The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice. BMC Plant Biology 10:125

doi: 10.1186/1471-2229-10-125
[8]

Wang K, Gao F, Ji Y, Liu Y, Dan Z, et al. 2013. ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex III in Honglian cytoplasmic male sterile rice. New Phytologist 198:408−18

doi: 10.1111/nph.12180
[9]

Itabashi E, Kazama T, Toriyama K. 2009. Characterization of cytoplasmic male sterility of rice with Lead Rice cytoplasm in comparison with that with Chinsurah Boro II cytoplasm. Plant Cell Reports 28:233−39

doi: 10.1007/s00299-008-0625-7
[10]

Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K. 2011. The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. The Plant Journal 65:359−67

doi: 10.1111/j.1365-313X.2010.04427.x
[11]

Wang NY. 2006. Breeding of male sterile restorer lines matching with cms-FA lines of new male sterile cytoplasm genes from Oryza rufipogon. Acta Agronomica Sinica 32:1884−91

[12]

Jiang H, Lu Q, Qiu S, Yu H, Wang Z, et al. 2022. Fujian cytoplasmic male sterility and the fertility restorer gene OsRf19 provide a promising breeding system for hybrid rice. Proceedings of the National Academy of Sciences of the United States of America 119:e2208759119

doi: 10.1073/pnas.2208759119
[13]

Wang N, Liang K, Li Y, Wang Y, Wang H, et al. 2008. Inheritance of restorer gene for CMS-FA hybrid rice. Acta Agronomica Sinica 34:1929−37

doi: 10.3724/sp.j.1006.2008.01929
[14]

Li Y, Zhang M, yang X, Lin C, Duan Y, Wang N. 2016. Fine mapping of a fertility restoring gene for a new CMS hybrid rice system. Molecular Breeding 36:141

doi: 10.1007/s11032-016-0561-0
[15]

Xie H, Peng X, Qian M, Cai Y, Ding X, et al. 2018. The chimeric mitochondrial gene orf182 causes non-pollen-type abortion in Dongxiang cytoplasmic male-sterile rice. The Plant Journal 95:715−26

doi: 10.1111/tpj.13982
[16]

Fujii S, Komatsu S, Toriyama K. 2007. Retrograde regulation of nuclear gene expression in CW-CMS of rice. Plant Molecular Biology 63:405−17

doi: 10.1007/s11103-006-9097-8
[17]

Fujii S, Kazama T, Yamada M, Toriyama K. 2010. Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes. BMC Genomics 11:209

doi: 10.1186/1471-2164-11-209
[18]

Igarashi K, Kazama T, Motomura K, Toriyama K. 2013. Whole genomic sequencing of RT98 mitochondria derived from Oryza rufipogon and northern blot analysis to uncover a cytoplasmic male sterility-associated gene. Plant and Cell Physiology 54:237−43

doi: 10.1093/pcp/pcs177
[19]

Tang H, Zheng X, Li C, Xie X, Chen Y, et al. 2017. Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes. Cell Research 27:130−46

doi: 10.1038/cr.2016.115
[20]

Takatsuka A, Kazama T, Toriyama K. 2021. Cytoplasmic male sterility-associated mitochondrial gene orf312 derived from rice (Oryza sativa L.) cultivar tadukan. Rice 14:46

doi: 10.1186/s12284-021-00488-7
[21]

Takatsuka A, Kazama T, Arimura SI, Toriyama K. 2022. TALEN-mediated depletion of the mitochondrial gene orf312 proves that it is a Tadukan-type cytoplasmic male sterility-causative gene in rice. The Plant Journal 110:994−1004

doi: 10.1111/tpj.15715
[22]

Gautam R, Shukla P, Kirti PB. 2023. Male sterility in plants: an overview of advancements from natural CMS to genetically manipulated systems for hybrid seed production. Theoretical and Applied Genetics 136:195

doi: 10.1007/s00122-023-04444-5
[23]

Kruft V, Eubel H, Jänsch L, Werhahn W, Braun HP. 2001. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiology 127:1694−710

doi: 10.1104/pp.010474
[24]

Logan DC. 2006. The mitochondrial compartment. Journal of Experimental Botany 57:1225−43

doi: 10.1093/jxb/erj151
[25]

Wang Z, Zou Y, Li X, Zhang Q, Chen L, et al. 2006. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. The Plant Cell 18:676−87

doi: 10.1105/tpc.105.038240
[26]

Hu J, Wang K, Huang W, Liu G, Gao Y, et al. 2012. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. The Plant Cell 24:109−22

doi: 10.1105/tpc.111.093211
[27]

Kazama T, Toriyama K. 2014. A fertility restorer gene, Rf4, widely used for hybrid rice breeding encodes a pentatricopeptide repeat protein. Rice 7:28

doi: 10.1186/s12284-014-0028-z
[28]

Tang H, Luo D, Zhou D, Zhang Q, Tian D, et al. 2014. The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Molecular plant 7:1497−500

doi: 10.1093/mp/ssu047
[29]

Huang W, Yu C, Hu J, Wang L, Dan Z, et al. 2015. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proceedings of the National Academy of Sciences of the United States of America 112:14984−89

doi: 10.1073/pnas.1511748112
[30]

Song S, Li Y, Qiu M, Xu N, Li B, et al. 2024. Structural variations of a new fertility restorer gene, Rf20, underlie the restoration of wild abortive-type cytoplasmic male sterility in rice. Molecular plant 17:1272−88

doi: 10.1016/j.molp.2024.07.001
[31]

Fujii S, Toriyama K. 2009. Suppressed expression of RETROGRADE-REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. Proceedings of the National Academy of Sciences of the United States of America 106:9513−18

doi: 10.1073/pnas.0901860106
[32]

Delannoy E, Stanley WA, Bond CS, Small ID. 2007. Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochemical Society Transactions 35:1643−47

doi: 10.1042/BST0351643
[33]

Zhou W, Lu Q, Li Q, Wang L, Ding S, et al. 2017. PPR-SMR protein SOT1 has RNA endonuclease activity. Proceedings of the National Academy of Sciences of the United States of America 114:E1554−E1563

doi: 10.1073/pnas.1612460114
[34]

Huang W, Zhang Y, Shen L, Fang Q, Liu Q, et al. 2020. Accumulation of the RNA polymerase subunit RpoB depends on RNA editing by OsPPR16 and affects chloroplast development during early leaf development in rice. New Phytologist 228:1401−16

doi: 10.1111/nph.16769
[35]

Zhang H, Che J, Ge Y, Pei Y, Zhang L, et al. 2017. Ability of Rf5 and Rf6 to restore fertility of Chinsurah Boro II-type cytoplasmic male sterile Oryza Sativa (ssp. Japonica) lines. Rice 10:2

doi: 10.1186/s12284-017-0142-9
[36]

Kazama T, Itabashi E, Fujii S, Nakamura T, Toriyama K. 2016. Mitochondrial ORF79 levels determine pollen abortion in cytoplasmic male sterile rice. The Plant Journal 85:707−16

doi: 10.1111/tpj.13135
[37]

Igarashi K, Kazama T, Toriyama K. 2016. A gene encoding pentatricopeptide repeat protein partially restores fertility in RT98-type cytoplasmic male-sterile rice. Plant and Cell Physiology 57:2187−93

doi: 10.1093/pcp/pcw135
[38]

Melonek J, Stone JD, Small I. 2016. Evolutionary plasticity of restorer-of-fertility-like proteins in rice. Scientific Reports 6:35152

doi: 10.1038/srep35152
[39]

Zhao Z, Ding Z, Huang J, Meng H, Zhang Z, et al. 2023. Copy number variation of the restorer Rf4 underlies human selection of three-line hybrid rice breeding. Nature Communications 14:7333

doi: 10.1038/s41467-023-43009-4
[40]

Shinjyo C. 1969. Cytoplasmic-genetic male sterility in cultivated rice, Orayza sativa L. The Japanese Journal of Genetics 44:149−56

doi: 10.1266/jjg.44.149
[41]

Zheng W, Ma Z, Zhao M, Xiao M, Zhao J, et al. 2020. Research and development strategies for hybrid japonica rice. Rice 13:36

doi: 10.1186/s12284-020-00398-0
[42]

Pu H, Zhou Z, Xu D. 2015. Development history and problems of three-line hybrid japonica rice. Jiangsu Agricultural Sciences 43:74−77

[43]

Ma GH, Yuan LP. 2015. Hybrid rice achievements, development and prospect in China. Journal of Integrative Agriculture 14:197−205

doi: 10.1016/S2095-3119(14)60922-9
[44]

Zheng X, Wei F, Cheng C, Qian Q. 2024. A historical review of hybrid rice breeding. Journal of Integrative Plant Biology 66:532−45

doi: 10.1111/jipb.13598
[45]

Liu D, Shi J, Liang W, Zhang D. 2023. Molecular mechanisms underlying plant environment-sensitive genic male sterility and fertility restoration. Seed Biology 2:13

doi: 10.48130/seedbio-2023-0013
[46]

Fan Y, Zhang Q. 2018. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reproduction 31:3−14

doi: 10.1007/s00497-017-0310-5
[47]

Kim YJ, Zhang D. 2018. Molecular control of male fertility for crop hybrid breeding. Trends in Plant Science 23:53−65

doi: 10.1016/j.tplants.2017.10.001
[48]

Shi M. 1985. The discovery and study of the photosensitive recessive male-sterile rice (Oryza sativa L. ssp. japonica). Scientia Agricultura Sinica 2:44−48

[49]

Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, et al. 2012. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proceedings of the National Academy of Sciences of the United States of America 109:2654−59

doi: 10.1073/pnas.1121374109
[50]

Ding J, Shen J, Mao H, Xie W, Li X, et al. 2012. RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice. Molecular Plant 5:1210−16

doi: 10.1093/mp/sss095
[51]

Fan Y, Yang J, Mathioni SM, Yu J, Shen J, et al. 2016. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proceedings of the National Academy of Sciences of the United States of America 113:15144−49

doi: 10.1073/pnas.1619159114
[52]

Wang D, Li J, Sun L, Hu Y, Yu J, et al. 2021. Two rice MYB transcription factors maintain male fertility in response to photoperiod by modulating sugar partitioning. New Phytologist 231:1612−29

doi: 10.1111/nph.17512
[53]

Zhang H, Liang W, Yang X, Luo X, Jiang N, et al. 2010. Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. The Plant Cell 22:672−89

doi: 10.1105/tpc.109.073668
[54]

Zhang H, Xu C, He Y, Zong J, Yang X, et al. 2013. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proceedings of the National Academy of Sciences of the United States of America 110:76−81

doi: 10.1073/pnas.1213041110
[55]

Zhou H, Zhou M, Yang Y, Li J, Zhu L, et al. 2014. RNase ZS1 processes Ub L40 mRNAs and controls thermosensitive genic male sterility in rice. Nature Communications 5:4884

doi: 10.1038/ncomms5884
[56]

Chen R, Zhao X, Shao Z, Wei Z, Wang Y, et al. 2007. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. The Plant Cell 19:847−61

doi: 10.1105/tpc.106.044123
[57]

Yu J, Han J, Kim YJ, Song M, Yang Z, et al. 2017. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proceedings of the National Academy of Sciences of the United States of America 114:12327−32

doi: 10.1073/pnas.1705189114
[58]

Han Y, Jiang S, Zhong X, Chen X, Ma C, et al. 2023. Low temperature compensates for defective tapetum initiation to restore the fertility of the novel TGMS line ostms15. Plant Biotechnology Journal 21:1659−70

doi: 10.1111/pbi.14066
[59]

Zhang YF, Li YL, Zhong X, Wang JJ, Zhou L, et al. 2022. Mutation of glucose-methanol-choline oxidoreductase leads to thermosensitive genic male sterility in rice and Arabidopsis. Plant Biotechnology Journal 20:2023−35

doi: 10.1111/pbi.13886
[60]

Zhou L, Mao YC, Yang YM, Wang JJ, Zhong X, et al. 2024. Temperature and light reverse the fertility of rice P/TGMS line ostms19 via reactive oxygen species homeostasis. Plant Biotechnology Journal 22:2020−32

doi: 10.1111/pbi.14322
[61]

Wu L, Jing X, Zhang B, Chen S, Xu R, et al. 2022. A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility. Nature Communications 13:2055

doi: 10.1038/s41467-022-29648-z
[62]

Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, et al. 2018. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nature Communications 9:604

doi: 10.1038/s41467-018-03048-8
[63]

Yu B, Liu L, Wang T. 2019. Deficiency of very long chain alkanes biosynthesis causes humidity-sensitive male sterility via affecting pollen adhesion and hydration in rice. Plant Cell & Environment 42:3340−54

doi: 10.1111/pce.13637
[64]

Chen H, Zhang Z, Ni E, Lin J, Peng G, et al. 2020. HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa). New Phytologist 225:2077−93

doi: 10.1111/nph.16288
[65]

Mei M, Chen L, Zhang Z, Li Z, Xu C, et al. 1999. pms3 is the locus causing the original photoperiod-sensitive male sterility mutation of 'Nongken 58S'. Science in China Series C-Life Sciences 42:316−22

doi: 10.1007/BF03183609
[66]

Mei MH, Dai XK, Xu CG, Zhang Q. 1999. Mapping and genetic analysis of the genes for photoperiod-sensitive genic male sterility in rice using the original mutant Nongken 58S. Crop Science 39:1711−15

doi: 10.2135/cropsci1999.3961711x
[67]

Lu Q, Li XH, Guo D, Xu CG, Zhang Q. 2005. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Molecular Genetics and Genomics 273:507−11

doi: 10.1007/s00438-005-1155-4
[68]

Li X, Lu Q, Wang F, Xu C, Zhang Q. 2001. Separation of the two-locus inheritance of photoperiod sensitive genic male sterility in rice and precise mapping the pms3 locus. Euphytica 119:343−48

doi: 10.1023/A:1017570025805
[69]

Zhou H, Liu Q, Li J, Jiang D, Zhou L, et al. 2012. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Research 22:649−60

doi: 10.1038/cr.2012.28
[70]

Liu N, Shan Y, Wang F, Xu C, Peng K, et al. 2001. Identification of an 85-kb DNA fragment containing pms1, a locus for photoperiod-sensitive genic male sterility in rice. Molecular Genetics and Genomics 266:271−5

doi: 10.1007/s004380100553
[71]

Yu J, Fan Y, Liu N, Shan Y, Li X, et al. 2007. Rapid genome evolution in pms1 region of rice revealed by comparative sequence analysis. Chinese Science Bulletin 52:912−21

doi: 10.1007/s11434-007-0150-z
[72]

Tamim S, Cai Z, Mathioni SM, Zhai J, Teng C, et al. 2018. Cis-directed cleavage and nonstoichiometric abundances of 21-nucleotide reproductive phased small interfering RNAs in grasses. New Phytologist 220:865−77

doi: 10.1111/nph.15181
[73]

Zhan J, Meyers BC. 2023. Plant small RNAs: their biogenesis, regulatory roles, and functions. Annual Review of Plant Biology 74:21−51

doi: 10.1146/annurev-arplant-070122-035226
[74]

Zhai J, Zhang H, Arikit S, Huang K, Nan GL, et al. 2015. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proceedings of the National Academy of Sciences of the United States of America 112:3146−51

doi: 10.1073/pnas.1418918112
[75]

Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan GL, et al. 2009. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Research 19:1429−40

doi: 10.1101/gr.089854.108
[76]

Teng C, Zhang H, Hammond R, Huang K, Meyers BC, et al. 2020. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nature Communications 11:2912

doi: 10.1038/s41467-020-16634-6
[77]

Shi C, Zhang J, Wu B, Jouni R, Yu C, et al. 2022. Temperature-sensitive male sterility in rice determined by the roles of AGO1d in reproductive phasiRNA biogenesis and function. New Phytologist 236:1529−44

doi: 10.1111/nph.18446
[78]

Yan B, Liu C, Sun J, Mao Y, Zhou C, et al. 2024. Impaired 2', 3'-cyclic phosphate tRNA repair causes thermo-sensitive genic male sterility in rice. Cell Research 34:763−75

doi: 10.1038/s41422-024-01012-4
[79]

Peng G, Liu M, Zhu L, Luo W, Wang Q, et al. 2023. The E3 ubiquitin ligase CSIT1 regulates critical sterility-inducing temperature by ribosome-associated quality control to safeguard two-line hybrid breeding in rice. Molecular plant 16:1695−709

doi: 10.1016/j.molp.2023.09.016
[80]

Peng G, Liu M, Luo Z, Deng S, Wang Q, et al. 2024. An E3 ubiquitin ligase CSIT2 controls critical sterility-inducing temperature of thermo-sensitive genic male sterile rice. New Phytologist 241:2059−74

doi: 10.1111/nph.19520
[81]

Wen J, Wang L, Wang J, Zeng Y, Xu Y, et al. 2019. The transcription factor OsbHLH138 regulates thermosensitive genic male sterility in rice via activation of TMS5. Theoretical and Applied Genetics 132:1721−32

doi: 10.1007/s00122-019-03310-7
[82]

Wen J, Zeng Y, Chen Y, Fan F, Li S. 2021. Genic male sterility increases rice drought tolerance. Plant Science 312:111057

doi: 10.1016/j.plantsci.2021.111057
[83]

Jin J, Gui S, Li Q, Wang Y, Zhang H, et al. 2020. The transcription factor GATA10 regulates fertility conversion of a two-line hybrid tms5 mutant rice via the modulation of Ub L40 expression. Journal of Integrative Plant Biology 62:1034−56

doi: 10.1111/jipb.12871
[84]

Zhang Q, Shen BZ, Dai XK, Mei MH, Saghai Maroof MA, et al. 1994. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proceedings of the National Academy of Sciences of the United States of America 91:8675−79

doi: 10.1073/pnas.91.18.8675
[85]

Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, et al. 2011. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiology 156:615−30

doi: 10.1104/pp.111.175760
[86]

Qi Y, Liu Q, Zhang L, Mao B, Yan D, et al. 2014. Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice. Theoretical and Applied Genetics 127:1173−82

doi: 10.1007/s00122-014-2289-8
[87]

Yang L, Qian X, Chen M, Fei Q, Meyers BC, et al. 2016. Regulatory role of a receptor-like kinase in specifying anther cell identity. Plant Physiology 171:2085−100

doi: 10.1104/pp.16.00016
[88]

Shi QS, Lou Y, Shen SY, Wang SH, Zhou L, et al. 2021. A cellular mechanism underlying the restoration of thermo/photoperiod-sensitive genic male sterility. Molecular Plant 14:2104−14

doi: 10.1016/j.molp.2021.08.019
[89]

Zhang C, Xu T, Ren MY, Zhu J, Shi QS, et al. 2020. Slow development restores the fertility of photoperiod-sensitive male-sterile plant lines. Plant Physiology 184:923−32

doi: 10.1104/pp.20.00951
[90]

Zhang C, Ren MY, Han WJ, Zhang YF, Huang MJ, et al. 2022. Slow development allows redundant genes to restore the fertility of rpg1, a TGMS line in Arabidopsis. The Plant Journal 109:1375−85

doi: 10.1111/tpj.15635
[91]

Zhu J, Lou Y, Shi QS, Zhang S, Zhou WT, et al. 2020. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nature Plants 6:360−67

doi: 10.1038/s41477-020-0622-6
[92]

Xu XF, Qian XX, Wang KQ, Yu YH, Guo YY, et al. 2021. Slowing development facilitates Arabidopsis mgt mutants to accumulate enough magnesium for pollen formation and fertility restoration. Frontiers in Plant Science 11:621338

doi: 10.3389/fpls.2020.621338
[93]

Wang KQ, Yu YH, Jia XL, Zhou SD, Zhang F, et al. 2022. Delayed callose degradation restores the fertility of multiple P/TGMS lines in Arabidopsis. Journal of Integrative Plant Biology 64:717−30

doi: 10.1111/jipb.13205
[94]

Ni E, Deng L, Chen H, Lin J, Ruan J, et al. 2021. OsCER1 regulates humidity-sensitive genic male sterility through very-long-chain (VLC) alkane metabolism of tryphine in rice. Functional Plant Biology 48:461−68

doi: 10.1071/FP20168
[95]

Wan X, Wu S, Li X. 2021. Breeding with dominant genic male-sterility genes to boost crop grain yield in the post-heterosis utilization era. Molecular Plant 14:531−34

doi: 10.1016/j.molp.2021.02.004
[96]

Deng X, Zhou D. 1994. Study on fertility transition and inheritance of the lower temperature thermo-sensitive dominant male-sterility rice "8987". Journal of Sichuan Agricultural University 12:376−82

[97]

Huang T, Wang Y, Ma B, Ma Y, Li S. 2007. Genetic analysis and mapping of genes involved in fertility of Pingxiang dominant genic male sterile rice. Journal of Genetics and Genomics 34:616−22

doi: 10.1016/S1673-8527(07)60070-8
[98]

Huang X, Tian Z, Deng Z, Zheng J, Lin C, et al. 2008. Preliminary identification of a novel sanming dominant male sterile gene in rice (Oryza sativa L.). Acta Agronomica Sinica 34:1865−68

doi: 10.3724/sp.j.1006.2008.01865
[99]

Liang Y, Min H, Xian X, Chen Y, Shi M, et al. 2018. Mapping the OsDMS-2 dominant male sterility rice mutation. Pakistan Journal of Botany 50:1191−96

[100]

Yan L, Zhang J, Cheng Z, Ouyang H, Li J, et al. 1989. The preliminary evalution of a dominant male-sterility gene in rice. Acta Agronomica Sinica 15:174−81

[101]

Yang Z, Xie X, Huang X, Wang F, Dong Z, et al. 2012. Mapping of Sanming dominant genic male sterility gene in rice. Hereditas 34(5):615−20

doi: 10.3724/sp.j.1005.2012.00615
[102]

Yin K, Zhang L, Zhu J, Zhu Y, Wang B. 2017. The application of japonica dominant genic male sterility rice W450 in japonica rice breeding. Seed World 2017(6):36−37

doi: 10.3969/j.issn.1000-8071.2017.06.018
[103]

Shu Q, Wu D, Xia Y, Gao M. 2000. Induction of dominant male sterility by using 60Co γ-rays irradiation in rice oryza sativa L. Journal of Nuclear Agricultural Sciences 14(5):274−78

doi: 10.3969/j.issn.1000-8551.2000.05.004
[104]

Zhu X, Rutger JN. 2000. Identification of dominant male sterility mutants in rice (oryza sativa L.). Journal of Nuclear Agricultural Sciences 14(5):279−83

doi: 10.3969/j.issn.1000-8551.2000.05.005
[105]

Yang K, Chen Y, Shi M, Converse R, Chen X, et al. 2017. A novel dominant rice male sterility mutant, OsDMS-1, simultaneously controlled by independent loci on chromosomes 1, 2, and 3. Molecular Breeding 37:25

doi: 10.1007/s11032-017-0635-7
[106]

Abe K, Oshima M, Akasaka M, Konagaya KI, Nanasato Y, et al. 2018. Development and characterization of transgenic dominant male sterile rice toward an outcross-based breeding system. Breeding Science 68:248−57

doi: 10.1270/jsbbs.17090
[107]

Tao Y, Chen H, Zou T, Ye Q, Han Y, et al. 2023. Manipulation of tapetal degradation provides a dominant male-sterility system for pyramiding breeding in rice. Plant Physiology 193:2282−86

doi: 10.1093/plphys/kiad486
[108]

Xu C, Xu Y, Wang Z, Zhang X, Wu Y, et al. 2023. Spontaneous movement of a retrotransposon generated genic dominant male sterility providing a useful tool for rice breeding. National Science Review 10:nwad210

doi: 10.1093/nsr/nwad210
[109]

Lei D, Jian A, Huang X, Liu X, Chen L, et al. 2023. Anther-specific expression of OsRIP1 causes dominant male sterility in rice. Plant Biotechnology Journal 21:1932−34

doi: 10.1111/pbi.14140
[110]

Liu J, Xia C, Dong H, Liu P, Yang R, et al. 2022. Wheat male-sterile 2 reduces ROS levels to inhibit anther development by deactivating ROS modulator 1. Molecular Plant 15:1428−39

doi: 10.1016/j.molp.2022.07.010
[111]

Xia C, Zhang L, Zou C, Gu Y, Duan J, et al. 2017. A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nature Communications 8:15407

doi: 10.1038/ncomms15407
[112]

Ni F, Qi J, Hao Q, Lyu B, Luo MC, et al. 2017. Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nature Communications 8:15121

doi: 10.1038/ncomms15121
[113]

Xin Q, Shen Y, Li X, Lu W, Wang X, et al. 2016. MS5 mediates early meiotic progression and its natural variants may have applications for hybrid production in Brassica napus. The Plant Cell 28:1263−78

doi: 10.1105/tpc.15.01018
[114]

Xin Q, Wang X, Gao Y, Xu D, Xie Z, et al. 2020. Molecular mechanisms underpinning the multiallelic inheritance of MS5 in Brassica napus. The Plant Journal 103:1723−34

doi: 10.1111/tpj.14857
[115]

Fox T, DeBruin J, Haug Collet K, Trimnell M, Clapp J, et al. 2017. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnology Journal 15:942−52

doi: 10.1111/pbi.12689
[116]

Han F, Yuan K, Sun W, Zhang X, Liu X, et al. 2023. A natural mutation in the promoter of Ms-cd1 causes dominant male sterility in Brassica oleracea. Nature Communications 14:6212

doi: 10.1038/s41467-023-41916-0
[117]

Veitia RA, Caburet S, Birchler JA. 2018. Mechanisms of Mendelian dominance. Clinical Genetics 93:419−28

doi: 10.1111/cge.13107
[118]

Wilkie AO. 1994. The molecular basis of genetic dominance. Journal of Medical Genetics 31:89−98

doi: 10.1136/jmg.31.2.89
[119]

Lisch D. 2009. Epigenetic regulation of transposable elements in plants. Annual Review of Plant Biology 60:43−66

doi: 10.1146/annurev.arplant.59.032607.092744
[120]

Lisch D. 2013. How important are transposons for plant evolution? Nature Reviews Genetics 14:49−61

doi: 10.1038/nrg3374
[121]

Gong H, He H. 2006. Research an utilization of domiant genic male sterility in crop. Journal of Anhui Agricultural Sciences 34:4209−12

doi: 10.3969/j.issn.0517-6611.2006.17.007
[122]

Wing RA, Purugganan MD, Zhang Q. 2018. The rice genome revolution: from an ancient grain to Green Super Rice. Nature Reviews Genetics 19:505−17

doi: 10.1038/s41576-018-0024-z
[123]

Yu S, Ali J, Zhou S, Ren G, Xie H, et al. 2022. From green super rice to green agriculture: reaping the promise of functional genomics research. Molecular Plant 15:9−26

doi: 10.1016/j.molp.2021.12.001
[124]

Pang Y, Chen K, Wang X, Xu J, Ali J, et al. 2017. Recurrent selection breeding by dominant male sterility for multiple abiotic stresses tolerant rice cultivars. Euphytica 213:268

doi: 10.1007/s10681-017-2055-5
[125]

Ouyang Y, Li X, Zhang Q. 2022. Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice. Journal of Genetics and Genomics 49:385−93

doi: 10.1016/j.jgg.2022.02.022
[126]

Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY. 2007. Progress in research and development on hybrid rice: a super-domesticate in China. Annals of Botany 100:959−66

doi: 10.1093/aob/mcm121
[127]

Chang Z, Chen Z, Wang N, Xie G, Lu J, et al. 2016. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proceedings of the National Academy of Sciences of the United States of America 113:14145−50

doi: 10.1073/pnas.1613792113