[1] |
Ren Y, Huang J, Wang X, Wang Y, Li H, et al. 2022. Effects of sulfite treatment on the quality of black fungus. Food Chemistry 385:132685 doi: 10.1016/j.foodchem.2022.132685 |
[2] |
Sun S, Zhang X, Chen W, Zhang L, Zhu H. 2016. Production of natural edible melanin by Auricularia auricula and its physicochemical properties. Food Chemistry 196:486−92 doi: 10.1016/j.foodchem.2015.09.069 |
[3] |
Khaskheli SG, Zheng W, Sheikh SA, Khaskheli AA, Liu Y, et al. 2015. Characterization of Auricularia auricula polysaccharides and its antioxidant properties in fresh and pickled product. International Journal of Biological Macromolecules 81:387−395 doi: 10.1016/j.ijbiomac.2015.08.020 |
[4] |
Qiu J, Zhang H, Wang Z, Liu D, Liu S, et al. 2018. The antitumor effect of folic acid conjugated-Auricularia auricular polysaccharide-cisplatin complex on cervical carcinoma cells in nude mice. International Journal of Biological Macromolecules 107:2180−89 doi: 10.1016/j.ijbiomac.2017.10.087 |
[5] |
Lu A, Yu M, Shen M, Xu S, Xu Z, et al. 2018. Preparation of the Auricularia auricular polysaccharides simulated hydrolysates and their hypoglycaemic effect. International Journal of Biological Macromolecules 106:1139−45 doi: 10.1016/j.ijbiomac.2017.08.118 |
[6] |
Zhang Y, Zeng Y, Men Y, Zhang J, Liu H, et al. 2018. Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae. International Journal of Biological Macromolecules 115:978−84 doi: 10.1016/j.ijbiomac.2018.04.145 |
[7] |
Zhao R, Cheng N, Nakata PA, Zhao L, Hu Q. 2019. Consumption of polysaccharides from Auricularia auricular modulates the intestinal microbiota in mice. Food Research International 123:383−92 doi: 10.1016/j.foodres.2019.04.070 |
[8] |
Yang M, Zhang Z, He Y, Li C, Wang J, et al. 2021. Study on the structure characterization and moisturizing effect of Tremella polysaccharide fermented from GCMCC5.39. Food Science and Human Wellness 10:471−79 doi: 10.1016/j.fshw.2021.04.009 |
[9] |
Leong YK, Yang FC, Chang JS. 2021. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydrate Polymers 251:117006 doi: 10.1016/j.carbpol.2020.117006 |
[10] |
Gao J, Lin L, Sun B, Zhao M. 2017. A comparison study on polysaccharides extracted from Laminaria japonica using different methods: structural characterization and bile acid-binding capacity. Food & Function 8:3043−52 doi: 10.1039/c7fo00218a |
[11] |
Yang N, Wang D, Geng Y, Man J, Gao Y, et al. 2022. Structure, physicochemical characterisation and properties of pectic polysaccharide from Premma puberula pamp. Food Hydrocolloids 128:107550 doi: 10.1016/j.foodhyd.2022.107550 |
[12] |
Rahmani Z, Khodaiyan F, Kazemi M, Sharifan A. 2020. Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. International Journal of Biological Macromolecules 147:1107−15 doi: 10.1016/j.ijbiomac.2019.10.079 |
[13] |
Jia Y, Du J, Li K, Li C. 2022. Emulsification mechanism of persimmon pectin with promising emulsification capability and stability. Food Hydrocolloids 131:107727 doi: 10.1016/j.foodhyd.2022.107727 |
[14] |
Mayer S, Weiss J, McClements DJ. 2013. Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability. Journal of Colloid and Interface Science 402:122−30 doi: 10.1016/j.jcis.2013.04.016 |
[15] |
Shao P, Feng J, Sun P, Xiang N, Lu B, et al. 2020. Recent advances in improving stability of food emulsion by plant polysaccharides. Food Research International 137:109376 doi: 10.1016/j.foodres.2020.109376 |
[16] |
Qiu C, Zhao M, McClements DJ. 2015. Improving the stability of wheat protein-stabilized emulsions: Effect of pectin and xanthan gum addition. Food Hydrocolloids 43:377−87 doi: 10.1016/j.foodhyd.2014.06.013 |
[17] |
Leroux J, Langendorff V, Schick G, Vaishnav V, Mazoyer J. 2003. Emulsion stabilizing properties of pectin. Food Hydrocolloids 17:455−62 doi: 10.1016/S0268-005X(03)00027-4 |
[18] |
Lv Y, Cai X, Shi N, Gao H, Zhang Z, et al. 2024. Emulsification performance and stabilization mechanism of okra polysaccharides with different structural properties. Food Hydrocolloids 153:109997 doi: 10.1016/j.foodhyd.2024.109997 |
[19] |
Xavier AAO, Mercadante AZ. 2019. The bioaccessibility of carotenoids impacts the design of functional foods. Current Opinion in Food Science 26:1−8 doi: 10.1016/j.cofs.2019.02.015 |
[20] |
Niroula A, Gamot TD, Ooi CW, Dhital S. 2021. Biomolecule-based pickering food emulsions: Intrinsic components of food matrix, recent trends and prospects. Food Hydrocolloids 112:106303 doi: 10.1016/j.foodhyd.2020.106303 |
[21] |
Yeum KJ, Booth SL, Sadowski JA, Liu C, Tang G, et al. 1996. Human plasma carotenoid response to the ingestion of controlled diets high in fruits and vegetables. The American Journal of Clinical Nutrition 64:594−602 doi: 10.1093/ajcn/64.4.594 |
[22] |
Amengual J, Widjaja-Adhi MAK, Rodriguez-Santiago S, Hessel S, Golczak M, et al. 2013. Two carotenoid oxygenases contribute to mammalian provitamin A metabolism. Journal of Biological Chemistry 288:34081−96 doi: 10.1074/jbc.M113.501049 |
[23] |
Rodrigues Barbosa J, dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN Jr. 2020. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydrate Polymers 229:115550 doi: 10.1016/j.carbpol.2019.115550 |
[24] |
Jiang D, Gao S, Gao H, Qiu N. 2018. The details of protein content determination by coomassie brilliant blue staining. Experiment Science and Technology 16:143−47 doi: 10.3969/j.issn.1672-4550.2018.04.035 |
[25] |
Taylor KA, Buchanan-Smith JG. 1992. A colorimetric method for the quantitation of uronic acids and a specific assay for galacturonic acid. Analytical Biochemistry 201:190−96 doi: 10.1016/0003-2697(92)90194-C |
[26] |
Shi H, Wan Y, Li O, Zhang X, Xie M, et al. 2020. Two-step hydrolysis method for monosaccharide composition analysis of natural polysaccharides rich in uronic acids. Food Hydrocolloids 101:105524 doi: 10.1016/j.foodhyd.2019.105524 |
[27] |
Liu Y, Zhang B, Ibrahim SA, Gao SS, Yang H, et al. 2016. Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue. Carbohydrate Polymers 145:71−77 doi: 10.1016/j.carbpol.2016.03.020 |
[28] |
Wu Q, Qin D, Cao H, Bai Y. 2020. Enzymatic hydrolysis of polysaccharide from Auricularia auricula and characterization of the degradation product. International Journal of Biological Macromolecules 162:127−35 doi: 10.1016/j.ijbiomac.2020.06.098 |
[29] |
Kazemi M, Khodaiyan F, Hosseini S. 2019. Utilization of food processing wastes of eggplant as a high potential pectin source and characterization of extracted pectin. Food Chemistry 294:339−46 doi: 10.1016/j.foodchem.2019.05.063 |
[30] |
Lefsih K, Giacomazza D, Dahmoune F, Mangione MR, Bulone D, et al. 2017. Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization. Food Chemistry 221:91−99 doi: 10.1016/j.foodchem.2016.10.073 |
[31] |
Asgari K, Labbafi M, Khodaiyan F, Kazemi M, Hosseini SS. 2020. High-methylated pectin from walnut processing wastes as a potential resource: Ultrasound assisted extraction and physicochemical, structural and functional analysis. International Journal of Biological Macromolecules 152:1274−82 doi: 10.1016/j.ijbiomac.2019.10.224 |
[32] |
Chen XW, Fu SY, Hou JJ, Guo J, Wang JM, et al. 2016. Zein based oil-in-glycerol emulgels enriched with β-carotene as margarine alternatives. Food Chemistry 211:836−44 |
[33] |
Zhang N, Chen H, Ma L, Zhang Y. 2013. Physical modifications of polysaccharide from Inonotus obliquus and the antioxidant properties. International Journal of Biological Macromolecules 54:209−15 doi: 10.1016/j.ijbiomac.2012.12.030 |
[34] |
Chen G, Yuan Q, Saeeduddin M, Ou S, Zeng X, et al. 2016. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydrate Polymers 153:663−78 doi: 10.1016/j.carbpol.2016.08.022 |
[35] |
Ma L, Chen H, Zhang Y, Zhang N, Fu L. 2012. Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus. Carbohydrate Polymers 89:371−78 doi: 10.1016/j.carbpol.2012.03.016 |
[36] |
Funami T, Zhang G, Hiroe M, Noda S, Nakauma M, et al. 2007. Effects of the proteinaceous moiety on the emulsifying properties of sugar beet pectin. Food Hydrocolloids 21:1319−29 doi: 10.1016/j.foodhyd.2006.10.009 |
[37] |
Shao H, Zhang H, Tian Y, Song Z, Lai PFH, et al. 2019. Composition and rheological properties of polysaccharide extracted from Tamarind (Tamarindus indica L.) seed. Molecules 24:1218 doi: 10.3390/molecules24071218 |
[38] |
Shi X, Huang J, Wang S, Yin J, Zhang F. 2022. Polysaccharides from Pachyrhizus erosus roots: Extraction optimization and functional properties. Food Chemistry 382:132413 doi: 10.1016/j.foodchem.2022.132413 |
[39] |
Ye J, Hua X, Zhao Q, Zhao W, Chu G, et al. 2020. Chain conformation and rheological properties of an acid-extracted polysaccharide from peanut sediment of aqueous extraction process. Carbohydrate Polymers 228:115410 doi: 10.1016/j.carbpol.2019.115410 |
[40] |
Lin X, Ji X, Wang M, Yin S, Peng Q. 2019. An alkali-extracted polysaccharide from Zizyphus jujuba cv. Muzao: Structural characterizations and antioxidant activities. International Journal of Biological Macromolecules 136:607−15 doi: 10.1016/j.ijbiomac.2019.06.117 |
[41] |
Hong T, Yin JY, Nie SP, Xie MY. 2021. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chemistry: X 12:100168 doi: 10.1016/j.fochx.2021.100168 |
[42] |
Chen Y, Xue Y. 2018. Purification, chemical characterization and antioxidant activities of a novel polysaccharide from Auricularia polytricha. International Journal of Biological Macromolecules 120:1087−92 doi: 10.1016/j.ijbiomac.2018.08.160 |
[43] |
Li W, Huang D, Jiang Y, Liu Y, Li F, et al. 2021. Preparation of pickering emulsion stabilised by Zein/Grape seed proanthocyanidins binary composite. International Journal of Food Science & Technology 56:3763−72 doi: 10.1111/ijfs.15067 |
[44] |
Li W, Huang D, Song W, Ouyang F, Li W, et al. 2023. Pickering emulsions stabilized by zein-proanthocyanidins-pectin ternary composites (ZPAAPs): Construction and delivery studies. Food Chemistry 404:134642 doi: 10.1016/j.foodchem.2022.134642 |
[45] |
Humerez-Flores J, Verkempinck SHE, Van Loey AM, Moldenaers P, Hendrickx ME. 2022. Targeted modifications of citrus pectin to improve interfacial properties and the impact on emulsion stability. Food Hydrocolloids 132:107841 doi: 10.1016/j.foodhyd.2022.107841 |
[46] |
Niu H, Chen X, Luo T, Chen H, Fu X. 2022. Relationships between the behavior of three different sources of pectin at the oil-water interface and the stability of the emulsion. Food Hydrocolloids 128:107566 doi: 10.1016/j.foodhyd.2022.107566 |
[47] |
Yang L, Zhang H, Zhao Y, Huang J, Zhu D, et al. 2020. Chemical structure, chain conformation and rheological properties of pectic polysaccharides from soy hulls. International Journal of Biological Macromolecules 148:41−48 doi: 10.1016/j.ijbiomac.2020.01.047 |
[48] |
Duan X, Yang Z, Yang J, Liu F, Xu X, et al. 2021. Structural and emulsifying properties of citric acid extracted Satsuma mandarin peel pectin. Food 10:2459 doi: 10.3390/foods10102459 |
[49] |
Mitsou E, Tavantzis G, Sotiroudis G, Ladikos D, Xenakis A, et al. 2016. Food grade water-in-oil microemulsions as replacement of oil phase to help process and stabilization of whipped cream. Colloids and Surfaces A: Physicochemical and Engineering Aspects 510:69−76 doi: 10.1016/j.colsurfa.2016.07.001 |
[50] |
Edzwald JK, Boak JW, Haff JD. 1977. Polymer coagulation of humic acid waters. Journal of the Environmental Engineering Division 103:989−1000 doi: 10.1061/JEEGAV.0000719 |
[51] |
Melanie H, Taarji N, Zhao Y, Khalid N, Neves MA, et al. 2020. Formulation and characterisation of O/W emulsions stabilised with modified seaweed polysaccharides. International Journal of Food Science & Technology 55:211−21 doi: 10.1111/ijfs.14264 |
[52] |
Yanai R, Kawaguchi M. 2017. Effect of hydrophobic modification of hydroxypropyl methylcellulose on silicone oil emulsions. Journal of Dispersion Science and Technology 38:40−45 doi: 10.1080/01932691.2015.1116080 |
[53] |
Meng Z, Qi K, Guo Y, Wang Y, Liu Y. 2018. Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids 77:17−29 doi: 10.1016/j.foodhyd.2017.09.006 |
[54] |
Dai L, Sun C, Wei Y, Mao L, Gao Y. 2018. Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles. Food Hydrocolloids 74:239−48 doi: 10.1016/j.foodhyd.2017.07.040 |
[55] |
Pan XF, Wang L, Pan A. 2021. Epidemiology and determinants of obesity in China. The Lancet Diabetes & Endocrinology 9:373−92 doi: 10.1016/S2213-8587(21)00045-0 |
[56] |
Xiao Q, Chen Z, Xie X, Zhang Y, Chen J, et al. 2022. A novel Pickering emulsion stabilized solely by hydrophobic agar microgels. Carbohydrate Polymers 297:120035 doi: 10.1016/j.carbpol.2022.120035 |
[57] |
Li Y, Zhong M, Xie F, Sun Y, Zhang S, et al. 2020. The effect of pH on the stabilization and digestive characteristics of soybean lipophilic protein oil-in-water emulsions with hypromellose. Food Chemistry 309:125579 |
[58] |
Cornacchia L, Roos YH. 2011. Stability of β-Carotene in Protein-Stabilized Oil-in-Water Delivery Systems. Journal of Agricultural and Food Chemistry 59:7013−20 |
[59] |
Huang D, Wu Y, Li W, Zhu X, Liu J, et al. 2022. Advanced insight into the O/W emulsions stabilising capacity of water-soluble protein from Tenebrio molitor. International Journal of Food Science & Technology 57:6286−97 doi: 10.1111/ijfs.15746 |
[60] |
Yan YZ, Ma RL, Zhang JY, He J, Ma JL, et al. 2016. Association of insulin resistance with glucose and lipid metabolism: ethnic heterogeneity in far western china. Mediators of Inflammation 2016:3825037 doi: 10.1155/2016/3825037 |
[61] |
Huang Z, Zong M, Lou W. 2022. Effect of acetylation modification on the emulsifying and antioxidant properties of polysaccharide from Millettia speciosa Champ. Food Hydrocolloids 124:107217 doi: 10.1016/j.foodhyd.2021.107217 |
[62] |
Chang Y, McClements DJ. 2016. Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80. Food Hydrocolloids 61:92−101 doi: 10.1016/j.foodhyd.2016.04.047 |
[63] |
Xu D, Yuan F, Gao Y, Panya A, McClements DJ, et al. 2014. Influence of whey protein–beet pectin conjugate on the properties and digestibility of β-carotene emulsion during in vitro digestion. Food Chemistry 156:374−79 doi: 10.1016/j.foodchem.2014.02.019 |
[64] |
Sun J, Liu T, Mu Y, Jing H, Obadi M, et al. 2021. Enhancing the stabilization of β-carotene emulsion using ovalbumin-dextran conjugates as emulsifier. Colloids and Surfaces A: Physicochemical and Engineering Aspects 626:126806 doi: 10.1016/j.colsurfa.2021.126806 |