[1] |
Pal CBT, Jadeja GC. 2019. Microwave-assisted deep eutectic solvent extraction of phenolic antioxidants from onion (Allium cepa L.) peel: a Box–Behnken design approach for optimization. Journal of Food Science and Technology 56(9):4211−23 doi: 10.1007/s13197-019-03891-7 |
[2] |
Essa MM, Bishir M, Bhat A, Chidambaram SB, Al-Balushi B, et al. 2023. Functional foods and their impact on health. Journal of Food Science and Technology 60(3):820−34 doi: 10.1007/s13197-021-05193-3 |
[3] |
Belwal T, Devkota HP, Ramola S, Andola HC, Bhatt ID. 2020. Optimization of extraction methodologies and purification technologies to recover phytonutrients from food. In Phytonutrients in Food, eds. Mohammad Nabavi S, Suntar I, Barreca D, Khan H. UK: Woodhead Publishing. pp. 217−35. doi: 10.1016/b978-0-12-815354-3.00007-1 |
[4] |
Arapitsas P, Turner C. 2008. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta 74(5):1218−23 doi: 10.1016/j.talanta.2007.08.029 |
[5] |
Wiczkowski W, Szawara-Nowak D, Topolska J. 2013. Red cabbage anthocyanins: profile, isolation, identification, and antioxidant activity. Food Research International 51:303−9 doi: 10.1016/j.foodres.2012.12.015 |
[6] |
Araújo AC, Gomes JP, Silva FBD, Nunes JS, Santos FSD, et al. 2023. Optimization of extraction method of anthocyanins from red cabbage. Molecules 28:3549 doi: 10.3390/molecules28083549 |
[7] |
Ghareaghajlou N, Hallaj-Nezhadi S, Ghasempour Z. 2021. Red cabbage anthocyanins: stability, extraction, biological activities and applications in food systems. Food Chemistry 365:130482 doi: 10.1016/j.foodchem.2021.130482 |
[8] |
Yiğit Ü, Turabi Yolaçaner E, Hamzalıoğlu A, Gökmen V. 2022. Optimization of microwave-assisted extraction of anthocyanins in red cabbage by response surface methodology. Journal of Food Processing and Preservation 46:e16120 doi: 10.1111/jfpp.16120 |
[9] |
Davis EJ, Spadoni Andreani E, Karboune S. 2021. Production of extracts composed of pectic oligo/polysaccharides and polyphenolic compounds from cranberry pomace by microwave-assisted extraction process. Food and Bioprocess Technology 14:634−49 doi: 10.1007/s11947-021-02593-3 |
[10] |
Ravanfar R, Moein M, Niakousari M, Tamaddon A. 2018. Extraction and fractionation of anthocyanins from red cabbage: ultrasonic-assisted extraction and conventional percolation method. Journal of Food Measurement and Characterization 12:2271−77 doi: 10.1007/s11694-018-9844-y |
[11] |
Gachovska T, Cassada D, Subbiah J, Hanna M, Thippareddi H, et al. 2010. Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing. Journal of Food Science 75:E323−E329 doi: 10.1111/j.1750-3841.2010.01699.x |
[12] |
Xu Z, Wu J, Zhang Y, Hu X, Liao X, et al. 2010. Extraction of anthocyanins from red cabbage using high pressure CO2. Bioresource Technology 101(18):7151−57 doi: 10.1016/j.biortech.2010.04.004 |
[13] |
Stoica R, Ganciarov M, Constantinescu-Aruxandei D, Capră L, Șuică-Bunghez IR, et al. 2023. Sustainable recovery of anthocyanins and other polyphenols from red cabbage byproducts. Foods 12:4157 doi: 10.3390/foods12224157 |
[14] |
Tecucianu AC, Drăghici O, Oancea S. 2020. An enzyme-enhanced extraction of anthocyanins from red cabbage and their thermal degradation kinetics. Acta Alimentaria 49:204−13 doi: 10.1556/066.2020.49.2.10 |
[15] |
Hemwimon S, Pavasant P, Shotipruk A. 2007. Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Separation and Purification Technology 54:44−50 doi: 10.1016/j.seppur.2006.08.014 |
[16] |
Proestos C, Komaitis M. 2008. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT - Food Science and Technology 41:652−59 doi: 10.1016/j.lwt.2007.04.013 |
[17] |
Bagade SB, Patil M. 2021. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Critical Reviews in Analytical Chemistry 51:138−49 doi: 10.1080/10408347.2019.1686966 |
[18] |
Doulabi M, Golmakani MT, Ansari S. 2020. Evaluation and optimization of microwave-assisted extraction of bioactive compounds from eggplant peel by-product. Journal of Food Processing and Preservation 44(11):e14853 doi: 10.1111/jfpp.14853 |
[19] |
Kumar M, Dahuja A, Sachdev A, Kaur C, Varghese E, et al. 2019. Valorisation of black carrot pomace: microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box–Behnken design. Journal of Food Science and Technology 56:995−1007 doi: 10.1007/s13197-018-03566-9 |
[20] |
Ciğeroğlu Z, Bayramoğlu M, Kırbaşlar Şİ, Şahin S. 2021. Comparison of microwave-assisted techniques for the extraction of antioxidants from Citrus paradisi Macf. biowastes. Journal of Food Science and Technology 58:1190−98 doi: 10.1007/s13197-020-04632-x |
[21] |
Chandrasekhar J, Madhusudhan MC, Raghavarao KSMS. 2012. Extraction of anthocyanins from red cabbage and purification using adsorption. Food and Bioproducts Processing 90:615−23 doi: 10.1016/j.fbp.2012.07.004 |
[22] |
Buffler CHR. 1992. Microwave cooking and processing. An AVI Book. New York: Van Nostrand Reinhold. |
[23] |
Akdeniz B, Sumnu G, Sahin S. 2018. Microencapsulation of phenolic compounds extracted from onion (Allium cepa) skin. Journal of Food Processing and Preservation 42:e13648 doi: 10.1111/jfpp.13648 |
[24] |
Özyürek M, Güçlü K, Apak R. 2011. The main and modified CUPRAC methods of antioxidant measurement. TrAC Trends in Analytical Chemistry 30:652−64 doi: 10.1016/j.trac.2010.11.016 |
[25] |
Neog U, Dhar P, Kumari T, Nickhil C, Deka SC, et al. 2023. Optimization of microwave-assisted process for extraction of phytochemicals from norabogori fruit (Prunus persica L. Batsch) and its application as fruit leather. Biomass Conversion and Biorefinery doi: 10.1007/s13399-023-04035-w |
[26] |
Sin HN, Yusof S, Sheikh Abdul Hamid N, Rahman RA. 2006. Optimization of enzymatic clarification of sapodilla juice using response surface methodology. Journal of Food Engineering 73:313−19 doi: 10.1016/j.jfoodeng.2005.01.031 |
[27] |
Mokrani A, Madani K. 2016. Effect of solvent. time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L. ) fruit. Separation and Purification Technology 162:68−76 doi: 10.1016/j.seppur.2016.01.043 |
[28] |
Veggi PC, Martinez J, Meireles MAA. 2013. Fundamentals of microwave extraction. In Microwave-assisted Extraction for Bioactive Compounds: Theory and Practice, eds. Chemat F, Cravotto G. Boston, MA: Springer Science & Business Media. pp. 15−52. doi: 10.1007/978-1-4614-4830-3_2 |
[29] |
Vu HT, Scarlett CJ, Vuong QV. 2019. Maximising recovery of phenolic compounds and antioxidant properties from banana peel using microwave assisted extraction and water. Journal of Food Science and Technology 56:1360−70 doi: 10.1007/s13197-019-03610-2 |
[30] |
Rehder AP, Silva PB, Xavier AMF, Barrozo MAS. 2021. Optimization of microwave-assisted extraction of bioactive compounds from a tea blend. Journal of Food Measurement and Characterization 15:1588−98 doi: 10.1007/s11694-020-00750-4 |
[31] |
Lao F, Giusti MM. 2018. Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. Journal of Cereal Science 80:87−93 doi: 10.1016/j.jcs.2018.01.001 |
[32] |
Rodsamran P, Sothornvit R. 2019. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience 28:66−73 doi: 10.1016/j.fbio.2019.01.017 |
[33] |
Alara OR, Abdurahman NH, Ali HA, Zain NM. 2021. Microwave-assisted extraction of phenolic compounds from Carica papaya leaves: an optimization study and LC-QTOF-MS analysis. Future Foods 3:100035 doi: 10.1016/j.fufo.2021.100035 |
[34] |
Rodríguez-Rojo S, Visentin A, Maestri D, Cocero MJ. 2012. Assisted extraction of rosemary antioxidants with green solvents. Journal of Food Engineering 109:98−103 doi: 10.1016/j.jfoodeng.2011.09.029 |