[1] |
Cilli R, Elia M, D'Este M, Giannico V, Amoroso N, et al. 2022. Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe. Scientific Reports 12:16349 doi: 10.1038/s41598-022-20347-9 |
[2] |
National Bureau of Statistics of China. 2023. Statistical Communique of the People's Republic of China on National Economic and Social Development 2018−2022. https://www.stats.gov.cn/ |
[3] |
Kondylatos S, Prapas I, Ronco M, Papoutsis I, Camps-Valls G, et al. 2022. Wildfire danger prediction and understanding with deep learning. Geophysical Research Letters 49(17):e2022GL099368 doi: 10.1029/2022gl099368 |
[4] |
Ma W, Feng Z, Cheng Z, Chen S, Wang F. 2020. Identifying forest fire driving factors and related impacts in China using random forest algorithm. Forests 11(5):507 doi: 10.3390/f11050507 |
[5] |
Liu N, Lei J, Gao W, Chen H, Xie X. 2021. Combustion dynamics of large-scale wildfires. Proceedings of the Combustion Institute 38(1):157−98 doi: 10.1016/j.proci.2020.11.006 |
[6] |
Li S, Wu Z, Liang Y, He H. 2017. The temporal and spatial clustering characteristics of forest fires in the great Xing'an Mountains. Chinese Journal of Ecology 36(1):198−204 doi: 10.13292/j.1000-4890.201701.034 |
[7] |
Rodrigues M, de la Riva J. 2014. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environmental Modelling & Software 57:192−201 doi: 10.1016/j.envsoft.2014.03.003 |
[8] |
Mandallaz D, Ye R. 1997. Prediction of forest fires with Poisson models. Canadian Journal of Forest Research 27(10):1685−94 doi: 10.1139/x97-103 |
[9] |
Tien Bui D, Bui QT, Nguyen QP, Pradhan B, Nampak H, et al. 2017. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology 233:32−44 doi: 10.1016/j.agrformet.2016.11.002 |
[10] |
Van Beusekom AE, Gould WA, Monmany AC, Khalyani AH, Quiñones M, et al. 2018. Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico. Climatic Change 146(1):117−31 doi: 10.1007/s10584-017-2045-6 |
[11] |
Yue W, Ren C, Liang Y, Guo Y, Zhang S. 2024. Study of wildfire hazard susceptibility in Nanning based on interpretable machine learning model. Science Technology and Engineering 24(2):858−70 doi: 10.12404/j.issn.1671-1815.2301676 |
[12] |
Wang Z, Wang K, Li Y, Li G. 2023. Research on forest fire prediction in Yunnan province based on LightGBM and SHAP. Fire Science and Technology 42(11):1567−71 doi: 10.3969/j.issn.1009-0029.2023.11.021 |
[13] |
Huang CL, Dun JF. 2008. A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Applied Soft Computing 8(4):1381−91 doi: 10.1016/j.asoc.2007.10.007 |
[14] |
Putatunda S, Rama K. 2018. A Comparative Analysis of Hyperopt as Against Other Approaches for Hyper-Parameter Optimization of XGBoost. SPML '18: Proceedings of the 2018 International Conference on Signal Processing and Machine Learning, Shanghai, China, 2018. New York, NY, USA: Association for Computing Machinery. pp. 6−10. doi: 10.1145/3297067.3297080 |
[15] |
Abdollahi A, Pradhan B. 2023. Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model. Science of The Total Environment 879:163004 doi: 10.1016/j.scitotenv.2023.163004 |
[16] |
Iban MC, Sekertekin A. 2022. Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin Provinces, Turkey. Ecological Informatics 69:101647 doi: 10.1016/j.ecoinf.2022.101647 |
[17] |
Al-Bashiti MK, Naser MZ. 2022. Machine learning for wildfire classification: Exploring blackbox, eXplainable, symbolic, and SMOTE methods. Natural Hazards Research 2(3):154−65 doi: 10.1016/j.nhres.2022.08.001 |
[18] |
Xie L, Zhang R, Zhan J, Li S, Shama A, et al. 2022. Wildfire risk assessment in Liangshan prefecture, China based on an integration machine learning algorithm. Remote Sensing 14(18):4592 doi: 10.3390/rs14184592 |
[19] |
Li Y, Li G, Wang K, Wang Z, Chen Y. 2023. Forest fire risk prediction based on stacking ensemble learning for Yunnan Province of China. Fire 7(1):13 doi: 10.3390/fire7010013 |
[20] |
Ma W, Feng Z, Cheng Z, Wang F. 2020. Study on driving factors and distribution pattern of forest fires in Shanxi province. Journal of Central South University of Forestry & Technology 40(9):57−69 doi: 10.14067/j.cnki.1673-923x.2020.09.007 |
[21] |
Guo F, Wang G, Su Z, Liang H, Wang W, et al. 2016. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. International Journal of Wildland Fire 25(5):505−19 doi: 10.1071/WF15121 |
[22] |
Catry FX, Rego FC, Bação FL, Moreira F. 2009. Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire 18(8):921−31 doi: 10.1071/wf07123 |
[23] |
Chang Y, Zhu Z, Bu R, Chen H, Feng Y, et al. 2013. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology 28(10):1989−2004 doi: 10.1007/s10980-013-9935-4 |
[24] |
Oliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JMC. 2012. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management 275:117−29 doi: 10.1016/j.foreco.2012.03.003 |
[25] |
Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, et al. 2008. Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire 17(5):602−13 doi: 10.1071/WF07087 |
[26] |
Maingi JK, Henry MC. 2007. Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. International Journal of Wildland Fire 16:23−33 doi: 10.1071/wf06007 |
[27] |
Eskandari S, Pourghasemi HR, Tiefenbacher JP. 2020. Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger. Forest Ecology and Management 473:118338 doi: 10.1016/j.foreco.2020.118338 |
[28] |
Moore ID, Grayson RB, Ladson AR. 1991. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes 5(1):3−30 doi: 10.1002/hyp.3360050103 |
[29] |
Zhang C, Yang Q, Li R. 2005. Advancement in topographic wetness index and its application. Progress in Geography 24:116−23 doi: 10.3969/j.issn.1007-6301.2005.06.014 |
[30] |
Cardille JA, Ventura SJ, Turner MG. 2001. Environmental and social factors influencing wildfires in the upper Midwest, United States. Ecological Applications 11(1):111−27 doi: 10.1890/1051-0761(2001)011[0111:EASFIW]2.0.CO;2 |
[31] |
Garcia CV, Woodard PM, Titus SJ, Adamowicz WL, Lee BS. 1995. A logit model for predicting the daily occurrence of human caused forest-fires. International Journal of Wildland Fire 5(2):101−11 doi: 10.1071/WF9950101 |
[32] |
Oliveira S, Pereira JMC, San-Miguel-Ayanz J, Lourenço L. 2014. Exploring the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression. Applied Geography 51:143−57 doi: 10.1016/j.apgeog.2014.04.002 |
[33] |
Guo F, Su Z, Wang G, Sun L, Lin F, et al. 2016. Wildfire ignition in the forests of southeast China: Identifying drivers and spatial distribution to predict wildfire likelihood. Applied Geography 66:12−21 doi: 10.1016/j.apgeog.2015.11.014 |
[34] |
Pham BT, Jaafari A, Avand M, Al-Ansari N, Dinh Du T, et al. 2020. Performance evaluation of machine learning methods for forest fire modeling and prediction. Symmetry 12(6):1022 doi: 10.3390/sym12061022 |
[35] |
Shi C, Zhang F. 2023. A forest fire susceptibility modeling approach based on integration machine learning algorithm. Forests 14(7):1506 doi: 10.3390/f14071506 |
[36] |
Gigović L, Pourghasemi HR, Drobnjak S, Bai S. 2019. Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in serbia's Tara National Park. Forests 10(5):408 doi: 10.3390/f10050408 |
[37] |
Peng W, Wei Y, Chen G, Lu G, Ye Q, et al. 2023. Analysis of wildfire danger level using logistic regression model in Sichuan Province, China. Forests 14(12):2352 doi: 10.3390/f14122352 |
[38] |
Bergstra J, Bardenet R, Bengio Y, Kégl B. 2011. Algorithms for hyper-parameter optimization. NIPS'11: Proceedings of the 24th International Conference on Neural Information Processing Systems, Granada, Spain, 2011. Red Hook, NY, USA: Curran Associates Inc. pp. 2546−54 |
[39] |
Ke G, Meng Q, Finley T, Wang T, Chen W, et al. 2017. LightGBM: a highly efficient gradient boosting decision tree. NIPS 2017: 31 st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 2017. Red Hook, NY, USA: Curran Associates Inc. pp. 3149−57. |
[40] |
Breiman L. 2001. Random Forests. Machine Learning 45:5−32 doi: 10.1023/A:1010933404324 |
[41] |
Jing X, Li X, Zhang D, Liu W, Zhang W, Zhang Z. 2024. Forecast zoning of forest fire occurrence: A case study in southern China. Forests 15(2):265 doi: 10.3390/f15020265 |
[42] |
Vapnik VN. 2000. The Nature of Statistical Learning Theory. New York: Springer. doi: 10.1007/978-1-4757-3264-1 |
[43] |
Yao X, Tham LG, Dai FC. 2008. Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China. Geomorphology 101(4):572−82 doi: 10.1016/j.geomorph.2008.02.011 |
[44] |
Lundberg S, Lee SI. 2017. A unified approach to interpreting model predictions. NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017. Red Hook, NY, United States: Curran Associates Inc. pp. 4768−77 |
[45] |
Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, et al. 2020. From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence 2(1):56−67 doi: 10.1038/s42256-019-0138-9 |
[46] |
Bui DT, Ngo PTT, Pham TD, Jaafari A, Minh NQ, et al. 2019. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. CATENA 179:184−96 doi: 10.1016/j.catena.2019.04.009 |
[47] |
Abbas F, Zhang F, Ismail M, Khan G, Iqbal J, et al. 2023. Optimizing machine learning algorithms for landslide susceptibility mapping along the karakoram highway, Gilgit Baltistan, Pakistan: A comparative study of baseline, Bayesian, and metaheuristic hyperparameter optimization techniques. Sensors 23(15):6843 doi: 10.3390/s23156843 |
[48] |
Liang M, An B, Li K, Du L, Deng T, et al. 2022. Improving genomic prediction with machine learning incorporating TPE for hyperparameters optimization. Biology 11(11):1647 doi: 10.3390/biology11111647 |
[49] |
Zhang G, Wang M, Liu K. 2019. Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China. International Journal of Disaster Risk Science 10(3):386−403 doi: 10.1007/s13753-019-00233-1 |
[50] |
Wang SSC, Qian Y, Leung LR, Zhang Y. 2021. Identifying key drivers of wildfires in the contiguous US using machine learning and game theory interpretation. Earth's Future 9(6):e2020EF001910 doi: 10.1029/2020EF001910 |
[51] |
Chen J, Di XY. 2015. Forest fire prevention management legal regime between China and the United States. Journal of Forestry Research 26(2):447−55 doi: 10.1007/s11676-015-0067-3 |
[52] |
Ying L, Cheng H, Shen Z, Guan P, Luo C, et al. 2021. Relative humidity and agricultural activities dominate wildfire ignitions in Yunnan, Southwest China: patterns, thresholds, and implications. Agricultural and Forest Meteorology 307:108540 doi: 10.1016/j.agrformet.2021.108540 |
[53] |
Wang J, Li D, Chen F, Wang S, Niu S. 2012. Study on spatial distribution and trend change of forest fires in Sichuan Province. Journal of Wildland Fire Science (2):26−30 doi: 10.3969/j.issn.1002-2511.2012.02.012 |