[1]

Ren J, Fu L, Nile SH, Zhang J, Kai G. 2019. Salvia miltiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Frontiers in Pharmacology 10:753

doi: 10.3389/fphar.2019.00753
[2]

Zhang Y, Li X, Wang Z. 2010. Antioxidant activities of leaf extract of Salvia miltiorrhiza Bunge and related phenolic constituents. Food and Chemical Toxicology 48:2656−62

doi: 10.1016/j.fct.2010.06.036
[3]

Zhou W, Huang Q, Wu X, Zhou Z, Ding M, et al. 2017. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Scientific Reports 7:10554

doi: 10.1038/s41598-017-10215-2
[4]

Shi M, Huang F, Deng C, Wang Y, Kai G. 2019. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza. Critical Reviews in Food Science and Nutrition 59:953−64

doi: 10.1080/10408398.2018.1474170
[5]

Hu T, To KKW, Wang L, Zhang L, Lu L, et al. 2014. Reversal of P-glycoprotein (P-gp) mediated multidrug resistance in colon cancer cells by cryptotanshinone and dihydrotanshinone of Salvia miltiorrhiza. Phytomedicine 21(11):1264−72

doi: 10.1016/j.phymed.2014.06.013
[6]

Kai G, Xu H, Zhou C, Liao P, Xiao J, et al. 2011. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metabolic Engineering 13:319−27

doi: 10.1016/j.ymben.2011.02.003
[7]

Shi M, Luo X, Ju G, Li L, Huang S, et al. 2016. Enhanced diterpene tanshinone accumulation and bioactivity of transgenic Salvia miltiorrhiza hairy roots by pathway engineering. Journal of Agricultural and Food Chemistry 64:2523−30

doi: 10.1021/acs.jafc.5b04697
[8]

Fu L, Han B, Zhou Y, Ren J, Cao W, et al. 2020. The anticancer properties of tanshinones and the pharmacological effects of their active ingredients. Frontiers in Pharmacology 11:193

doi: 10.3389/fphar.2020.00193
[9]

Deng C, Shi M, Fu R, Zhang Y, Wang Q, et al. 2020. ABA-responsive transcription factor bZIP1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza. Journal of Experimental Botany 71:5948−62

doi: 10.1093/jxb/eraa295
[10]

Gupta S, Malviya N, Kushwaha H, Nasim J, Bisht NC, et al. 2015. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor. Planta 241:549−62

doi: 10.1007/s00425-014-2239-3
[11]

Yanagisawa S. 2004. Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant and Cell Physiology 45:386−91

doi: 10.1093/pcp/pch055
[12]

Yanagisawa S. 2002. The Dof family of plant transcription factors. Trends in Plant Science 7:555−60

doi: 10.1016/S1360-1385(02)02362-2
[13]

Cavalar M, Möller C, Offermann S, Krohn NM, Grasser KD, et al. 2003. The interaction of DOF transcription factors with nucleosomes depends on the positioning of the binding site and is facilitated by maize HMGB5. Biochemistry 42:2149−57

doi: 10.1021/bi026761r
[14]

Yanagisawa S, Sheen J. 1998. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. The Plant Cell 10:75−89

doi: 10.1105/tpc.10.1.75
[15]

Yang X, Tuskan GA, Cheng MZM. 2006. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiology 142:820−30

doi: 10.1104/pp.106.083642
[16]

Wang Z, Wong DCJ, Chen Z, Bai W, Si H, et al. 2022. Emerging roles of plant DNA-binding with one finger transcription factors in various hormone and stress signaling pathways. Frontiers in Plant Science 13:844201

doi: 10.3389/fpls.2022.844201
[17]

Yanagisawa S. 2000. Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. The Plant Journal 21:281−88

doi: 10.1046/j.1365-313x.2000.00685.x
[18]

Nan H, Ludlow RA, Lu M, An H. 2021. Genome-wide analysis of Dof genes and their response to abiotic stress in rose (Rosa chinensis). Frontiers in Genetics 12:538733

doi: 10.3389/fgene.2021.538733
[19]

Cai M, Lin J, Li Z, Lin Z, Ma Y, et al. 2020. Allele specific expression of Dof genes responding to hormones and abiotic stresses in sugarcane. PLoS One 15:e0227716

doi: 10.1371/journal.pone.0227716
[20]

Liu X, Liu Z, Hao Z, Chen G, Qi K, et al. 2020. Characterization of Dof family in Pyrus bretschneideri and role of PbDof9.2 in flowering time regulation. Genomics 112:712−20

doi: 10.1016/j.ygeno.2019.05.005
[21]

Venkatesh J, Park SW. 2015. Genome-wide analysis and expression profiling of DNA-binding with one zinc finger (Dof) transcription factor family in potato. Plant Physiology and Biochemistry 94:73−85

doi: 10.1016/j.plaphy.2015.05.010
[22]

Wu Y, Yang W, Wei J, Yoon H, An G. 2017. Transcription factor OsDOF18 controls ammonium uptake by inducing ammonium transporters in rice roots. Molecules and Cells 40:178−85

doi: 10.14348/molcells.2017.2261
[23]

Wang S, Wang R, Yang C. 2022. Selection and functional identification of Dof genes expressed in response to nitrogen in Populus simonii × Populus nigra. Open Life Sciences 17:756−80

doi: 10.1515/biol-2022-0084
[24]

Yanagisawa S, Izui K. 1993. Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif. The Journal of Biological Chemistry 268:16028−36

doi: 10.1016/S0021-9258(18)82353-5
[25]

Yang J, Yang MF, Zhang WP, Chen F, Shen SH. 2011. A putative flowering-time-related Dof transcription factor gene, JcDof3, is controlled by the circadian clock in Jatropha curcas. Plant Science 181:667−74

doi: 10.1016/j.plantsci.2011.05.003
[26]

Qin H, Wang J, Chen X, Wang F, Peng P, et al. 2019. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. New Phytologist 223:798−813

doi: 10.1111/nph.15824
[27]

Zang D, Wang L, Zhang Y, Zhao H, Wang Y. 2017. ThDof1.4 and ThZFP1 constitute a transcriptional regulatory cascade involved in salt or osmotic stress in Tamarix hispida. Plant Molecular Biology 94:495−507

doi: 10.1007/s11103-017-0620-x
[28]

Raghavendra AS, Gonugunta VK, Christmann A, Grill E. 2010. ABA perception and signalling. Trends in Plant Science 15:395−401

doi: 10.1016/j.tplants.2010.04.006
[29]

Zhang F, Fu X, Lv Z, Lu X, Shen Q, et al. 2015. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Molecular Plant 8:163−75

doi: 10.1016/j.molp.2014.12.004
[30]

Corrales AR, Carrillo L, Lasierra P, Nebauer SG, Dominguez-Figueroa J, et al. 2017. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant, Cell & Environment 40:748−64

doi: 10.1111/pce.12894
[31]

Cai X, Zhang C, Shu W, Ye Z, Li H, et al. 2016. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochemical and Biophysical Research Communications 474:736−41

doi: 10.1016/j.bbrc.2016.04.148
[32]

Lijavetzky D, Carbonero P, Vicente-Carbajosa J. 2003. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evolutionary Biology 3:17

doi: 10.1186/1471-2148-3-17
[33]

Li T, Wang X, Elango D, Zhang W, Li M, et al. 2022. Genome-wide identification, phylogenetic and expression pattern analysis of Dof transcription factors in blueberry (Vaccinium corymbosum L.). PeerJ 10:e14087

doi: 10.7717/peerj.14087
[34]

Ma Y, Cui G, Chen T, Ma X, Wang R, et al. 2021. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nature Communications 12:685

doi: 10.1038/s41467-021-20959-1
[35]

Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39:W29−W37

doi: 10.1093/nar/gkr367
[36]

Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, et al. 1999. Protein identification and analysis tools in the ExPASy server. In 2-D Proteome Analysis Protocols, vol 112, ed. Link AJ. US: Humana Press. pp. 531–52. doi: 10.1385/1-59259-584-7:531

[37]

Emanuelsson O, Nielsen H, Brunak S, von Heijne G. 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology 300:1005−16

doi: 10.1006/jmbi.2000.3903
[38]

Chou KC, Shen HB. 2010. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5:e11335

doi: 10.1371/journal.pone.0011335
[39]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725−29

doi: 10.1093/molbev/mst197
[40]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for Interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[41]

Rombauts S, Déhais P, Van Montagu M, Rouzé P. 1999. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Research 27:295−96

doi: 10.1093/nar/27.1.295
[42]

Shi M, Hua Q, Kai G. 2021. Comprehensive transcriptomic analysis in response to abscisic acid in Salvia miltiorrhiza. Plant Cell, Tissue and Organ Culture 147(2):389−404

doi: 10.1007/s11240-021-02135-x
[43]

Zhou W, Shi M, Deng C, Lu S, Huang F, et al. 2021. The methyl jasmonate-responsive transcription factor SmMYB1 promotes phenolic acid biosynthesis in Salvia miltiorrhiza. Horticulture Research 8:10

doi: 10.1038/s41438-020-00443-5
[44]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[45]

Qin Y, Li J, Chen J, Yao S, Li L, et al. 2024. Genome-wide characterization of the bHLH gene family in Gynostemma pentaphyllum reveals its potential role in the regulation of gypenoside biosynthesis. BMC Plant Biology 24:205

doi: 10.1186/s12870-024-04879-y
[46]

Cai X, Zhang Y, Zhang C, Zhang T, Hu T, et al. 2013. Genome-wide analysis of plant-specific Dof transcription factor family in tomato. Journal of Integrative Plant Biology 55:552−66

doi: 10.1111/jipb.12043
[47]

Yin Z, Liu J, Zhao H, Chu X, Liu H, et al. 2023. SlMYB1 regulates the accumulation of lycopene, fruit shape, and resistance to Botrytis cinerea in tomato. Horticulture Research 10:uhac282

doi: 10.1093/hr/uhac282
[48]

Xu P, Chen H, Ying L, Cai W. 2016. AtDOF5.4/OBP4, a DOF transcription factor gene that negatively regulates cell cycle progression and cell expansion in Arabidopsis thaliana. Scientific Reports 6:27705

doi: 10.1038/srep27705
[49]

Krohn NM, Yanagisawa S, Grasser KD. 2002. Specificity of the stimulatory interaction between chromosomal HMGB proteins and the transcription factor Dof2 and its negative regulation by protein kinase CK2-mediated phosphorylation. Journal of Biological Chemistry 277:32438−44

doi: 10.1074/jbc.M203814200
[50]

Zhang C, Liu S, Liu D, Guo F, Yang Y, et al. 2022. Genome-wide survey and expression analysis of GRAS transcription factor family in sweet potato provides insights into their potential roles in stress response. BMC Plant Biology 22:232

doi: 10.1186/s12870-022-03618-5
[51]

Le DT, Nishiyama R, Watanabe Y, Vankova R, Tanaka M, et al. 2012. Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. PLoS One 7:e42411

doi: 10.1371/journal.pone.0042411
[52]

Walther D, Brunnemann R, Selbig J. 2007. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana. PLoS Genetics 3:e11

doi: 10.1371/journal.pgen.0030011
[53]

Li G, Xu W, Jing P, Hou X, Fan X. 2021. Overexpression of VyDOF8, a Chinese wild grapevine transcription factor gene, enhances drought tolerance in transgenic tobacco. Environmental and Experimental Botany 190:104592

doi: 10.1016/j.envexpbot.2021.104592
[54]

Wen CL, Cheng Q, Zhao L, Mao A, Yang J, et al. 2016. Identification and characterization of Dof transcription factors in the cucumber genome. Scientific Reports 6:23072

doi: 10.1038/srep23072
[55]

Xu D, Li X, Wu X, Meng L, Zou Z, et al. 2021. Tomato SlCDF3 delays flowering time by regulating different FT-like genes under long-day and short-day conditions. Frontiers in Plant Science 12:650068

doi: 10.3389/fpls.2021.650068
[56]

He H, Li Q, Fang L, Yang W, Xu F, et al. 2023. Comprehensive analysis of NAC transcription factors in Scutellaria baicalensis and their response to exogenous ABA and GA3. International Journal of Biological Macromolecules 244:125290

doi: 10.1016/j.ijbiomac.2023.125290
[57]

Zhang S, Chen Y, Zhao L, Li C, Yu J, et al. 2020. A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree Physiology 40:413−23

doi: 10.1093/treephys/tpaa004
[58]

Zhang Y, Duan J, Wang Q, Zhang M, Zhi H, et al. 2023. The Paeonia qiui R2R3-MYB transcription factor PqMYBF1 positively regulates flavonol accumulation. Plants 12(7):1427

doi: 10.3390/plants12071427