[1] |
Notununu I, Moleleki L, Roopnarain A, Adeleke R. 2022. Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: a review. Pedosphere 32:90−106 doi: 10.1016/S1002-0160(21)60051-6 |
[2] |
Wang K, Yang S, Ding Y. 2023. Advances in uncovering mechanisms of plant responses to heat stress. Plant Physiology Journal 59:759−72 doi: 10.13592/j.cnki.ppj.400007 |
[3] |
Kumar TA, Charan TB. 1998. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiology 117:851−58 doi: 10.1104/pp.117.3.851 |
[4] |
Ashraf M, Harris PJC. 2013. Photosynthesis under stressful environments: an overview. Photosynthetica 51:163−90 doi: 10.1007/s11099-013-0021-6 |
[5] |
Xue S, Yang Z, Li J. 2017. Effect of high temperature stress on photosynthetic characteristic and fruit quality of greenhouse cucumber leaves in flowering stage. Northern Horticulture 2017:1−7 |
[6] |
Sun S. 2018. Response and adaptation of protected cucumber to high temperature stress. Thesis. Shandong Agricultural University, China. |
[7] |
Bi H, Dong X, Liu P, Li Q, Ai X. 2016. Influence of over expression of CsRCA on photosynthesis of cucumber seedlings under high temperature stress. Chinese Journal of Applied Ecology 27:2308−14 doi: 10.13287/j.1001-9332.201607.041 |
[8] |
Sun S, Wang Q, Sun C, Liu F, Bi H, et al. 2017. Response and adaptation of photosynthesis of cucumber seedlings to high temperature stress. Chinese Journal of Applied Ecology 28:1603−10 doi: 10.13287/j.1001-9332.201705.009 |
[9] |
Xu C, Zhang X, Liu C, Liu K, Bi H, et al. 2022. Alleviating effect of exogenous melatonin and calcium on the peroxidation damages of cucumber under high temperature stress. Chinese Journal of Applied Ecology 33:2725−35 doi: 10.13287/j.1001-9332.202210.010 |
[10] |
Qi C, Dong D, Li Y, Wang X, Guo L, et al. 2022. Heat shock-induced cold acclimation in cucumber through CsHSFA1d-activated JA biosynthesis and signaling. The Plant Journal 111:85−102 doi: 10.1111/tpj.15780 |
[11] |
Pan D, Fu X, Zhang X, Liu F, Ai X. 2020. Hydrogen sulfide is required for salicylic acid–induced chilling tolerance of cucumber seedlings. Protoplasma 257:1543−57 doi: 10.1007/s00709-020-01531-y |
[12] |
Zhang X, Liu F, Zhai J, Li F, Ai X. 2020. Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber. Planta 251:69 doi: 10.1007/s00425-020-03362-w |
[13] |
Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. 1958. Isolation of melatonin, the pineal gland factor that lightens melanocytes. Journal of the American Chemical Society 80:2587 doi: 10.1021/ja01543a060 |
[14] |
Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, et al. 1995. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research 18:28−31 doi: 10.1111/j.1600-079X.1995.tb00136.x |
[15] |
Sun C, Liu L, Wang L, Li B, Jin C, et al. 2021. Melatonin: a master regulator of plant development and stress responses. Journal of Integrative Plant Biology 63:126−45 doi: 10.1111/jipb.12993 |
[16] |
Nawaz K, Chaudhary R, Sarwar A, Ahmad B, Gul A, et al. 2021. Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: current status and future perspectives. Sustainability 13:294 doi: 10.3390/su13010294 |
[17] |
Byeon Y, Back K. 2015. Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa). Journal of Pineal Research 58:343−51 doi: 10.1111/jpi.12220 |
[18] |
Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. 2015. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20:18886−906 doi: 10.3390/molecules201018886 |
[19] |
Liu J, Wang W, Wang L, Sun Y. 2015. Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regulation 77:317−26 doi: 10.1007/s10725-015-0066-6 |
[20] |
Zhou K, Li Y, Hu L, Zhang J, Yue H, et al. 2022. Overexpression of MdASMT9, an N-acetylserotonin methyltransferase gene, increases melatonin biosynthesis and improves water-use efficiency in transgenic apple. Tree Physiology 42:1114−26 doi: 10.1093/treephys/tpab157 |
[21] |
Yang W, Du Y, Zhou Y, Chen J, Xu Z, et al. 2019. Overexpression of TaCOMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences 20:652 doi: 10.3390/ijms20030652 |
[22] |
Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, et al. 2016. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. Journal of Pineal Research 61:457−69 doi: 10.1111/jpi.12359 |
[23] |
Shi H, Tan D, Reiter RJ, Ye T, Yang F, et al. 2015. Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. Journal of Pineal Research 58:335−42 doi: 10.1111/jpi.12219 |
[24] |
Jahan MS, Guo S, Sun J, Shu S, Wang Y, et al. 2021. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry 167:309−20 doi: 10.1016/j.plaphy.2021.08.002 |
[25] |
Gong J, Xiang J. 2001. Studies on a quick intact measurement to cucumber colony's leaf area. China Vegetables 2001:7−9 doi: 10.3969/j.issn.1000-6346.2001.04.003 |
[26] |
Zhao S, Cang J. 2015. Plant physiology experimental guidance. Beijing: China Agricultural Press. |
[27] |
Von Caemmerer S, Farquhar GD. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376−87 doi: 10.1007/BF00384257 |
[28] |
Demmig-Adams B, Adams WW, III. 1992. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Biology 43:599−626 doi: 10.1146/annurev.pp.43.060192.003123 |
[29] |
Baker NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59:89−113 doi: 10.1146/annurev.arplant.59.032607.092759 |
[30] |
Strasser RJ, Tsimilli-Michael M, Qiang S, Goltse V. 2010. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797:1313−26 doi: 10.1016/j.bbabio.2010.03.008 |
[31] |
Srivastava A, Strasser RJ, Govindjee. 1995. Differential effects of dimethylbenzoquinone and dichlorobenzoquinone on chlorophyll fluorescence transient in spinach thylakoids. Journal of Photochemistry and Photobiology B: Biology 31:163−69 doi: 10.1016/1011-1344(95)07177-6 |
[32] |
Zhang Z, Jia Y, Gao H, Zhang L, Li H, et al. 2011. Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta 234:883−89 doi: 10.1007/s00425-011-1447-3 |
[33] |
Sukhov V, Surova L, Sherstneva O, Katicheva L, Vodeneev V. 2014. Variation potential influence on photosynthetic cyclic electron flow in pea. Frontiers in Plant Science 5:766 doi: 10.3389/fpls.2014.00766 |
[34] |
Yudina L, Sukhova E, Gromova E, Mudrilov M, Zolin Y, et al. 2023. Effect of duration of LED lighting on growth, photosynthesis and respiration in lettuce. Plants 12(3):442 doi: 10.3390/plants12030442 |
[35] |
Yudina L, Sukhova E, Mudrilov M, Nerush V, Pecherina A, et al. 2022. Ratio of intensities of blue and red light at cultivation influences photosynthetic light reactions, respiration, growth, and reflectance indices in lettuce. Biology 11(1):60 doi: 10.3390/biology11010060 |
[36] |
Fu X, Feng Y, Zhang X, Zhang Y, Bi H, et al. 2021. Salicylic acid is involved in rootstock-scion communication in improving the chilling tolerance of grafted cucumber. Frontiers in Plant Science 12:693344 doi: 10.3389/fpls.2021.693344 |
[37] |
Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, et al. 2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110(3):361−71 doi: 10.1016/S0092-8674(02)00867-X |
[38] |
Zhang X, Feng Y, Jing T, Liu X, Ai X, et al. 2021. Melatonin promotes the chilling tolerance of cucumber seedlings by regulating antioxidant system and relieving photoinhibition. Frontiers in Plant Science 12:789617 doi: 10.3389/fpls.2021.789617 |
[39] |
Li J, Liu Y, Zhang M, Xu H, Ning K, et al. 2022. Melatonin increases growth and salt tolerance of Limonium bicolor by improving photosynthetic and antioxidant capacity. BMC Plant Biology 22:16 doi: 10.1186/s12870-021-03402-x |
[40] |
Fu J, Zhang S, Jiang H, Zhang X, Gao H, et al. 2022. Melatonin-induced cold and drought tolerance is regulated by brassinosteroids and hydrogen peroxide signaling in perennial ryegrass. Environmental and Experimental Botany 196:104815 doi: 10.1016/j.envexpbot.2022.104815 |
[41] |
Ahammed GJ, Xu W, Liu A, Chen S. 2019. Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environmental and Experimental Botany 161:303−11 doi: 10.1016/j.envexpbot.2018.06.006 |
[42] |
Farquhar GD, Von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78−90 doi: 10.1007/BF00386231 |
[43] |
Bi H, Dong X, Wang M, Ai X. 2015. Foliar spray calcium and Salicylic acid improve the activities and gene expression of photosynthetic enzymes in cucumber seedlings under low light intensity and suboptimal temperature. Acta Horticulturae Sinica 42:56−64 doi: 10.16420/j.issn.0513-353x.2014-0857 |
[44] |
Yang C, Zhang Z, Gao H, Fan X, Liu M, et al. 2014. The mechanism by which NaCl treatment alleviates PSI photoinhibition under chilling-light treatment. Journal of Photochemistry and Photobiology B: Biology 140:286−91 doi: 10.1016/j.jphotobiol.2014.08.012 |
[45] |
Zhang J, Shi Y, Zhang X, Du H, Xu B, et al. 2017. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (lolium perenne L.). Environmental and Experimental Botany 138:36−45 doi: 10.1016/j.envexpbot.2017.02.012 |
[46] |
Zhuang K, Kong F, Zhang S, Meng C, Yang M, et al. 2019. Whirly1 enhances tolerance to chilling stress in tomato via protection of photosystem II and regulation of starch degradation. New Phytologist 221:1998−2012 doi: 10.1111/nph.15532 |
[47] |
Jin L, Che X, Zhang Z, Gao H. 2015. The relationship between the changes in Wk and different damage degree of PSII donor side and acceptor side under high temperature with high light in cucumber. Plant Physiology Journal 51:969−76 doi: 10.13592/j.cnki.ppj.2015.0156 |
[48] |
Strasser BJ. 1997. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research 52:147−55 doi: 10.1023/A:1005896029778 |
[49] |
Li P, Gao H, Strasser RJ. 2005. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Journal of Plant Physiology and Molecular Biology 31:559−66 doi: 10.3321/j.issn:1671-3877.2005.06.001 |
[50] |
Zhang Z, Zhang L, Gao H. 2009. Research of the photoinhibition of PSI and PSII in leaves of cucumber under chilling stress combined with different light intensities. Scientia Agricultura Sinica 42:4288−93 |
[51] |
Munekage Y, Hashimoto M, Miyake C, Tomizawa KI, Endo T, et al. 2004. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579−82 doi: 10.1038/nature02598 |
[52] |
Shikanai T. 2016. Chloroplast NDH: a different enzyme with a structure similar to that of respiratory NADH dehydrogenase. Biochimica et Biophysica Acta 1857:1015−22 doi: 10.1016/j.bbabio.2015.10.013 |
[53] |
Liu Y, Lu J, Meng S, Wang Z, Zhang Y, et al. 2019. Advances in PGR5/PGRL1-dependent cyclic electron flow. Plant Physiology Journal 55(4):433−43 doi: 10.13592/j.cnki.ppj.2019.0068 |