[1] |
Preedy V, Srirajaskanthan R, Patel V. 2013. The handbook of food fortification and health: from concepts to public health applications. Volume 1. pp. 1–400 |
[2] |
Food and Agriculture Organization (FAO). 2004. International year of rice. www.fao.org/4/J1458e/J1458e00.htm |
[3] |
Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH. 2011. Biofortification: a new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin 32:S31−S40 doi: 10.1177/15648265110321S105 |
[4] |
World Health Organization (FAO). 1998. Vitamin and mineral requirements in human nutrition. 2nd edition. World Health Organization. pp. 1–20. www.who.int/publications/i/item/9241546123 |
[5] |
Ahmed W, Butt MS, Sharif MK, Iqbal T. 2016. Effect of storage on cooking quality attributes and fortificants stability in edible-coated iron-folate fortified basmati rice. Journal of Food Processing and Preservation 40(5):925−33 doi: 10.1111/jfpp.12671 |
[6] |
Jyrwa YW, Palika R, Boddula S, Boiroju NK, Madhari R, et al. 2020. Retention, stability, iron bioavailability and sensory evaluation of extruded rice fortified with iron, folic acid and vitamin B12. Maternal & Child Nutrition 16(S3):e12932 doi: 10.1111/mcn.12932 |
[7] |
Taleon V, Hasan MZ, Jongstra R, Wegmüller R, Bashar MK. 2022. Effect of parboiling conditions on zinc and iron retention in biofortified and non-biofortified milled rice. Journal of the Science of Food and Agriculture 102(2):514−22 doi: 10.1002/jsfa.11379 |
[8] |
Akasapu K, Ojah N, Gupta AK, Choudhury AJ, Mishra P. 2020. An innovative approach for iron fortification of rice using cold plasma. Food Research International 136:109599 doi: 10.1016/j.foodres.2020.109599 |
[9] |
Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, et al. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry 34:540−60 doi: 10.1016/j.ultsonch.2016.06.035 |
[10] |
Bonto AP, Tiozon RN Jr, Sreenivasulu N, Camacho DH. 2021. Impact of ultrasonic treatment on rice starch and grain functional properties: a review. Ultrasonics Sonochemistry 71:105383 doi: 10.1016/j.ultsonch.2020.105383 |
[11] |
Bonto AP, Jearanaikoon N, Sreenivasulu N, Camacho DH. 2020. High uptake and inward diffusion of iron fortificant in ultrasonicated milled rice. LWT 128:109459 doi: 10.1016/j.lwt.2020.109459 |
[12] |
Molina L, Lapis JR, Sreenivasulu N, Cuevas RPO. 2019. Determination of macronutrient and micronutrient content in rice grains using inductively coupled plasma-optical emission spectrometry (ICP-OES). Methods in Molecular Biology 1892:253−64 doi: 10.1007/978-1-4939-8914-0_14 |
[13] |
Cuevas RPO, Domingo CJ, Sreenivasulu N. 2018. Multivariate-based classification of predicting cooking quality ideotypes in rice (Oryza sativa L.) indica germplasm. Rice 11:56 doi: 10.1186/s12284-018-0245-y |
[14] |
Cuevas RPO, Takhar PS, Sreenivasulu N. 2019. Characterization of mechanical texture attributes of cooked milled rice by texture profile analyses and unraveling viscoelasticity properties through rheometry. In Rice Grain Quality, ed. Sreenivasulu N. New York: Humana Press. pp. 151−67. doi: 10.1007/978-1-4939-8914-0_9 |
[15] |
Li H, Lei N, Yan S, Yang J, Yu T, et al. 2019. The importance of amylopectin molecular size in determining the viscoelasticity of rice starch gels. Carbohydrate Polymers 212:112−18 doi: 10.1016/j.carbpol.2019.02.043 |
[16] |
Hurrell RF. 2018. Efficacy and safety of iron fortification. In Food Fortification in a Globalized World, eds. Mannar MGV, Hurrell RF. Amsterdam: Elsevier. pp. 195−212. doi: 10.1016/b978-0-12-802861-2.00020-1 |
[17] |
Miano AC, Rojas ML, Augusto PED. 2017. Other mass transfer unit operations enhanced by ultrasound. In Ultrasound: Advances for Food Processing and Preservation, ed. Bermudez-Aguirre D. Amsterdam: Elsevier. pp. 369−89. doi: 10.1016/b978-0-12-804581-7.00015-4 |
[18] |
Miano AC, Augusto PED. 2018. The ultrasound assisted hydration as an opportunity to incorporate nutrients into grains. Food Research International 106:928−35 doi: 10.1016/j.foodres.2018.02.006 |
[19] |
Bonto AP, Tiozon RN Jr, Rojviriya C, Sreenivasulu N, Camacho DH. 2020. Sonication increases the porosity of uncooked rice kernels affording softer textural properties, loss of intrinsic nutrients and increased uptake capacity during fortification. Ultrasonics Sonochemistry 68:105234 doi: 10.1016/j.ultsonch.2020.105234 |
[20] |
Chen J. 2014. Food oral processing: some important underpinning principles of eating and sensory perception. Food Structure 1(2):91−105 doi: 10.1016/j.foostr.2014.03.001 |
[21] |
Okabe M. 1979. Texture measurement of cooked rice and its relationship to the eating quality. Journal of Texture Studies 10(2):131−52 doi: 10.1111/j.1745-4603.1979.tb00241.x |
[22] |
Champagne ET, Lyon BG, Min BK, Vinyard BT, Bett KL, et al. 1998. Effects of postharvest processing on texture profile analysis of cooked rice. Cereal Chemistry 75(2):181−86 doi: 10.1094/cchem.1998.75.2.181 |
[23] |
Perez JH, Tanaka F, Uchino T. 2012. Modeling of mass transfer and initiation of hygroscopically induced cracks in rice grains in a thermally controlled soaking condition: with dependency of diffusion coefficient to moisture content and temperature – A 3D finite element approach. Journal of Food Engineering 111(3):519−27 doi: 10.1016/j.jfoodeng.2012.02.029 |
[24] |
Zhu L, Wu G, Cheng L, Zhang H, Wang L, et al. 2019. Effect of soaking and cooking on structure formation of cooked rice through thermal properties, dynamic viscoelasticity, and enzyme activity. Food Chemistry 289:616−24 doi: 10.1016/j.foodchem.2019.03.082 |
[25] |
Li C, Luo JX, Zhang CQ, Yu WW. 2020. Causal relations among starch chain-length distributions, short-term retrogradation and cooked rice texture. Food Hydrocolloids 108:106064 doi: 10.1016/j.foodhyd.2020.106064 |
[26] |
Tiozon RN Jr, Camacho DH, Bonto AP, Oyong GG, Sreenivasulu N. 2021. Efficient fortification of folic acid in rice through ultrasonic treatment and absorption. Food Chemistry 335:127629 doi: 10.1016/j.foodchem.2020.127629 |
[27] |
Chen J, Feng M, Gonzalez Y, Pugnaloni LA. 2008. Application of probe tensile method for quantitative characterisation of the stickiness of fluid foods. Journal of Food Engineering 87(2):281−90 doi: 10.1016/j.jfoodeng.2007.12.004 |
[28] |
Prom-u-thai C, Rerkasem B, Shu F, Huang L. 2009. Iron fortification and parboiled rice quality: appearance, cooking quality and sensory attributes. Journal of the Science of Food and Agriculture 89(15):2565−71 doi: 10.1002/jsfa.3753 |
[29] |
Zhu F, Wang YJ. 2012. Rheological and thermal properties of rice starch and rutin mixtures. Food Research International 49:757−62 doi: 10.1016/j.foodres.2012.09.031 |
[30] |
Kaur H, Gill BS. 2019. Effect of high-intensity ultrasound treatment on nutritional, rheological and structural properties of starches obtained from different cereals. International Journal of Biological Macromolecules 126:367−75 doi: 10.1016/j.ijbiomac.2018.12.149 |
[31] |
Vela AJ, Villanueva M, Solaesa ÁG, Ronda F. 2021. Impact of high-intensity ultrasound waves on structural, functional, thermal and rheological properties of rice flour and its biopolymers structural features. Food Hydrocolloids 113:106480 doi: 10.1016/j.foodhyd.2020.106480 |