[1] |
Wang H, Zheng Y, Shi W, Wang X. 2022. Comparison of Arrhenius model and artificial neuronal network for predicting quality changes of frozen tilapia (Oreochromis niloticus). Food Chemistry 372:131268 doi: 10.1016/j.foodchem.2021.131268 |
[2] |
Shi X, Zhang J, Shi C, Tan Y, Hong H, et al. 2022. Nondestructive prediction of freshness for bighead carp (Hypophthalmichthys nobilis) head by Excitation-Emission Matrix (EEM) analysis based on fish eye fluid: comparison of BPNNs and RBFNNs. Food Chemistry 382:132341 doi: 10.1016/j.foodchem.2022.132341 |
[3] |
Zhao H, Liu S, Tian C, Yan G, Wang D. 2018. An overview of current status of cold chain in China. International Journal of Refrigeration 88:483−95 doi: 10.1016/j.ijrefrig.2018.02.024 |
[4] |
Yu J, Xiao K, Xue W, Shen Y, Tan J, et al. 2020. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: principles, methods and applications. Frontiers of Environmental Science & Engineering 14:31 doi: 10.1007/s11783-019-1210-8 |
[5] |
Li L, Wang Y, Zhang W, Yu S, Wang X, et al. 2020. New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review. Chemical Engineering Journal 381:122676 doi: 10.1016/j.cej.2019.122676 |
[6] |
ElMasry G, Nagai H, Moria K, Nakazawa N, Tsuta M, et al. 2015. Freshness estimation of intact frozen fish using fluorescence spectroscopy and chemometrics of excitation-emission matrix. Talanta 143:145−56 doi: 10.1016/j.talanta.2015.05.031 |
[7] |
Rahman MM, Shibata M, ElMasry G, Nakazawa N, Nakauchi S, et al. 2019. Expeditious prediction of post-mortem changes in frozen fish meat using three-dimensional fluorescence fingerprints. Bioscience Biotechnology and Biochemistry 83:901−13 doi: 10.1080/09168451.2019.1569494 |
[8] |
Liao Q, Suzuki T, Kohno Y, Al Riza DF, Kuramoto M, et al. 2018. Potential of using uric acid fluorescence in eye fluid for freshness assessment on Red Sea bream (Pagrus major). Spectroscopy Letters 51:431−37 doi: 10.1080/00387010.2018.1501395 |
[9] |
Marini F. 2009. Artificial neural networks in foodstuff analyses: Trends and perspectives A review. Analytica Chimica Acta 635:121−31 doi: 10.1016/j.aca.2009.01.009 |
[10] |
Chu Y, Tan M, Yi Z, Ding Z, Yang D, et al. 2021. Shelf-life prediction of glazed large yellow croaker (Pseudosciaena crocea) during frozen storage based on Arrhenius model and long-short-term memory neural networks model. Fishes 6(3):39 doi: 10.3390/fishes6030039 |
[11] |
Guo L, Xu C, Yu T, Wumaier T, Han X. 2024. Ultra-short-term wind power forecasting based on long short-term memory network with modified honey badger algorithm. Energy Reports 12:3548−65 doi: 10.1016/j.egyr.2024.09.021 |
[12] |
Ren H, Du L, Peng C, Yang J, Gao W. 2024. The composite drought index incorporated solar-induced chlorophyll fluorescence enhances the monitoring capability of short-term drought. Journal of Hydrology 637:131361 doi: 10.1016/j.jhydrol.2024.131361 |
[13] |
Matenda RT, Rip D, Marais J, Williams PJ. 2024. Exploring the potential of hyperspectral imaging for microbial assessment of meat: A review. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 315:124261 doi: 10.1016/j.saa.2024.124261 |
[14] |
Huang W, Zhao J, Wang X. 2024. Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price. Energy Economics 132:107459 doi: 10.1016/j.eneco.2024.107459 |
[15] |
Gao K, Huang Z, Lyu C, Liu C. 2024. Multi-scale prediction of remaining useful life of lithium-ion batteries based on variational mode decomposition and integrated machine learning. Journal of Energy Storage 99:113372 doi: 10.1016/j.est.2024.113372 |
[16] |
Zhang Y, Chu G, Shen D. 2021. The role of investor attention in predicting stock prices: The long short-term memory networks perspective. Finance Research Letters 38:101484 doi: 10.1016/j.frl.2020.101484 |
[17] |
Boutheina B, Leila K, Besbes N, Messina CM, Santulli A, et al. 2023. Evaluation of the qualitative properties and consumer perception of marinated sardine Sardina pilchardus: The effect of fucoxanthin addition. International Journal of Gastronomy and Food Science 31:100611 doi: 10.1016/j.ijgfs.2022.100611 |
[18] |
Koel M. 2024. Developments in analytical chemistry initiated from green chemistry. Sustainable Chemistry for the Environment 5:100078 doi: 10.1016/j.scenv.2024.100078 |
[19] |
Takefuji Y. 2023. An updated tutorial on reproducible PyPI applications for advancing chemometrics and boosting learner motivation. Chemometrics and Intelligent Laboratory Systems 241:104941 doi: 10.1016/j.chemolab.2023.104941 |
[20] |
Smilde AK, Doornbos DA. 1992. Simple validatory tools for judging the predictive performance of parafac and three-way PLS. Journal of Chemometrics 6:11−28 doi: 10.1002/cem.1180060103 |
[21] |
Câmara ABF, da Silva WJO, Neves ACdO, Moura HOMA, de Lima KMG, de Carvalho LS. 2024. Excitation-emission fluorescence spectroscopy coupled with PARAFAC and MCR-ALS with area correlation for investigation of jet fuel contamination. Talanta 266:125126 doi: 10.1016/j.talanta.2023.125126 |
[22] |
Mangalgiri K, Cheng Z, Cervantes S, Spencer S, Liu H. 2021. UV-based advanced oxidation of dissolved organic matter in reverse osmosis concentrate from a potable water reuse facility: a parallel-factor (PARAFAC) analysis approach. Water Research 204:117585 doi: 10.1016/j.watres.2021.117585 |
[23] |
Yu Y, Si X, Hu C, Zhang J. 2019. A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation 31:1235−70 doi: 10.1162/neco_a_01199 |
[24] |
Smagulova K, James AP. 2019. A survey on LSTM memristive neural network architectures and applications. European Physical Journal-Special Topics 228:2313−24 doi: 10.1140/epjst/e2019-900046-x |
[25] |
Tran TTK, Bateni SM, Ki SJ, Vosoughifar H. 2021. A review of neural networks for air temperature forecasting. Water 13:1294 doi: 10.3390/w13091294 |
[26] |
Bekhit AEDA, Holman BWB, Giteru SG, Hopkins DL. 2021. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends in Food Science & Technology 109:280−302 doi: 10.1016/j.jpgs.2021.01.006 |
[27] |
Lorentzen G, Ageeva TN, Heide M, Esaiassen M. 2020. Temperature fluctuations in processing and distribution: Effect on the shelf life of fresh cod fillets (Gadus morhua L.). Food Control 112:107102 doi: 10.1016/j.foodcont.2020.107102 |
[28] |
Gayer AV, Yakimov BP, Sluchanko NN, Shirshin EA. 2023. Multifarious analytical capabilities of the UV/Vis protein fluorescence in blood plasma. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 286:122028 doi: 10.1016/j.saa.2022.122028 |
[29] |
Wang X, Xie J, Qian Y. 2020. A non-invasive method for quantitative monitoring of quality changes and water migration in bigeye tuna (Thunnus obesus) during simulated cold chain logistics using low-field nuclear magnetic resonance coupled with PCA. Food Science and Technology International 26:475−84 doi: 10.1177/1082013220903148 |
[30] |
Wu Y, Deng J, Xu F, Li X, Kong L, et al. 2023. The mechanism of Leuconostoc mesenteroides subsp. IMAU:80679 in improving meat color: Myoglobin oxidation inhibition and myoglobin derivatives formation based on multi enzyme-like activities. Food Chemistry 428:136751 doi: 10.1016/j.foodchem.2023.136751 |
[31] |
Karoui R, Thomas E, Dufour E. 2006. Utilisation of a rapid technique based on front-face fluorescence spectroscopy for differentiating between fresh and frozen–thawed fish fillets. Food Research International 39:349−55 doi: 10.1016/j.foodres.2005.08.007 |
[32] |
Wu B, Dahlberg K, Gao X, Smith J, Bailin J. 2018. A rapid method based on fluorescence spectroscopy for meat spoilage detection. International Journal of High Speed Electronics and Systems 27:1840025 doi: 10.1142/S0129156418400256 |
[33] |
Sun F, Zong W, Liu R, Chai J, Liu Y. 2010. Micro-environmental influences on the fluorescence of tryptophan. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 76:142−45 doi: 10.1016/j.saa.2010.03.002 |
[34] |
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. 2023. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Research Reviews 87:101931 doi: 10.1016/j.arr.2023.101931 |
[35] |
Hassoun A, Karoui R. 2015. Front-face fluorescence spectroscopy coupled with chemometric tools for monitoring fish freshness stored under different refrigerated conditions. Food Control 54:240−49 doi: 10.1016/j.foodcont.2015.01.042 |
[36] |
Shibu A, Jones S, Tolley PL, Diaz D, Kwiatkowski CO, et al. 2023. Correlating structure and photophysical properties in thiazolo[5, 4-d]thiazole crystal derivatives for use in solid-state photonic and fluorescence-based optical devices. Materials Advances 4:6321−32 doi: 10.1039/D3MA00686G |
[37] |
Chicco D, Warrens MJ, Jurman G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peerj Computer Science 7:e623 doi: 10.7717/peerj-cs.623 |