[1] |
Lotfy A, Salama M, Zahran F, Jones E, Badawy A, et al. 2014. Characterization of mesenchymal stem cells derived from rat bone marrow and adipose tissue: A comparative study. International Journal of Stem Cells 7:135−42 doi: 10.15283/ijsc.2014.7.2.135 |
[2] |
Kamiya D, Takenaka-Ninagawa N, Motoike S, Kajiya M, Akaboshi T, et al. 2022. Induction of functional xeno-free MSCs from human iPSCs via a neural crest cell lineage. NPJ Regenerative Medicine 7:47 doi: 10.1038/s41536-022-00241-8 |
[3] |
Li M, Chen H, Zhu M. 2022. Mesenchymal stem cells for regenerative medicine in central nervous system. Frontiers in Neuroscience 16:1068114 doi: 10.3389/fnins.2022.1068114 |
[4] |
Pan Q, Fouraschen SMG, de Ruiter PE, Dinjens WNM, Kwekkeboom J, et al. 2014. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Experimental Biology and Medicine 239:105−15 doi: 10.1177/1535370213506802 |
[5] |
Wang F. 2006. Culture of Animal Cells: A Manual of Basic Technique, Fifth Edition. In Vitro Cellular & Developmental Biology - Animal 42:169 doi: 10.1290/BR090501.1 |
[6] |
Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, et al. 2011. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117:459−69 doi: 10.1182/blood-2010-05-287508 |
[7] |
Sensebé L, Bourin P. 2009. Mesenchymal stem cells for therapeutic purposes. Transplantation 87:S49−S53 doi: 10.1097/TP.0b013e3181a28635 |
[8] |
Kamenaga T, Kuroda Y, Nagai K, et al. 2021. Cryopreserved human adipose-derived stromal vascular fraction maintains fracture healing potential via angiogenesis and osteogenesis in an immunodeficient rat model. Stem Cell Research & Therapy 12:110 doi: 10.1186/s13287-021-02182-3 |
[9] |
Marquez-Curtis LA, Elliott JAW. 2024. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 115:104856 doi: 10.1016/j.cryobiol.2024.104856 |
[10] |
Hu C, Li L. 2015. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein & Cell 6:562−74 doi: 10.1007/s13238-015-0180-2 |
[11] |
Kobayashi E, Hishikawa S, Teratani T, Lefor AT. 2012. The pig as a model for translational research: overview of porcine animal models at Jichi Medical University. Transplantation Research 1:8 doi: 10.1186/2047-1440-1-8 |
[12] |
Shih BB, Brown SM, Barrington J, Lefevre L, Mabbott NA, et al. 2023. Defining the pig microglial transcriptome reveals its core signature , regional heterogeneity , and similarity with human and rodent microglia. Glia 71:334−49 doi: 10.1002/glia.24274 |
[13] |
Feng Z, Yang Y, Liu Z, Zhao W, Huang L, et al. 2021. Integrated analysis of DNA methylome and transcriptome reveals the differences in biological characteristics of porcine mesenchymal stem cells. BMC Genomic Data 22:56 doi: 10.1186/s12863-021-01016-8 |
[14] |
Boucard N, Viton C, Agay D, Mari E, Roger T, et al. 2007. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28:3478−88 doi: 10.1016/j.biomaterials.2007.04.021 |
[15] |
Conrad JV, Meyer S, Ramesh PS, Neira JA, Rusteika M, et al. 2023. Efficient derivation of transgene-free porcine induced pluripotent stem cells enables in vitro modeling of species-specific developmental timing. Stem Cell Reports 18:2328−43 doi: 10.1016/j.stemcr.2023.10.009 |
[16] |
Kahveci R, Kahveci Z, Sirmali S, Özcan M. 1995. Urethral reconstruction with autologous vein graft: an experimental study. British Journal of Plastic Surgery 48:500−3 doi: 10.1016/0007-1226(95)90127-2 |
[17] |
Vodička P, Smetana K Jr, Dvořánková B, Emerick T, Xu YZ, et al. 2005. The miniature pig as an animal model in biomedical research. Annals of the New York Academy of Sciences 1049:161−71 doi: 10.1196/annals.1334.015 |
[18] |
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357−59 doi: 10.1038/nmeth.1923 |
[19] |
Cao M, Wang X, Guo S, Kang Y, Pei J, et al. 2022. F1 male sterility in Cattle-Yak examined through changes in testis tissue and transcriptome profiles. Animals 12:2711 doi: 10.3390/ani12192711 |
[20] |
Jafari M, Ansari-Pour N. 2019. Why, when and how to adjust your P values? Cell Journal 20:604−607 doi: 10.22074/cellj.2019.5992 |
[21] |
Chen X, Sarkar SK. 2020. Benjamini – Hochberg procedure applied to mid p-values. Journal of Statistical Planning and Inference 205:34−45 doi: 10.1016/j.jspi.2019.06.001 |
[22] |
Brownstein CA, Beggs AH, Homer N, Merriman B, Yu TW, et al. 2014. An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge. Genome Biology 15:R53 doi: 10.1186/gb-2014-15-3-r53 |
[23] |
Guan D, Tian H. 2017. Integrated network analysis to explore the key genes regulated by parathyroid hormone receptor 1 in osteosarcoma. World Journal of Surgical Oncology 15:177 doi: 10.1186/s12957-017-1242-0 |
[24] |
Fan M, Jin C, Li D, Deng Y, Yao L, et al. 2023. Multi-level advances in databases related to systems pharmacology in traditional Chinese medicine: a 60-year review. Frontiers in Pharmacology 14:1289901 doi: 10.3389/fphar.2023.1289901 |
[25] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[26] |
Hass R, Kasper C, Böhm S, Jacobs R. 2011. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling 9:12 doi: 10.1186/1478-811X-9-12 |
[27] |
Yang Y, Zhang W, Wang X, Yang J, Cui Y, et al. 2023. A passage-dependent network for estimating the in vitro senescence of mesenchymal stromal/stem cells using microarray, bulk and single cell RNA sequencing. Frontiers in Cell and Developmental Biology 11:998666 doi: 10.3389/fcell.2023.998666 |
[28] |
Cárdenas AO, Zamora-Rodríguez BC, Batalla-García KA, Ávalos-Rodríguez A, Contreras-Ramos A, et al. 2023. Isolation and identification of mesenchymal stem cells derived from adipose tissue of sprague dawley rats. Journal of Visualized Experiment 194:e65172 doi: 10.3791/65172 |
[29] |
Geraerts M, Verfaillie CM. 2009. Adult Stem and Progenitor Cells. In Engineering of Stem Cells. Advances in Biochemical Engineering/Biotechnology. vol. 114. Berlin, Heidelberg: Springer. pp. 1−21. doi: 10.1007/10_2008_21 |
[30] |
Fu X, Xu B, Jiang J, Du X, Yu X, et al. 2020. Effects of cryopreservation and long-term culture on biological characteristics and proteomic profiles of human umbilical cord-derived mesenchymal stem cells. Clinical Proteomics 17:15 doi: 10.1186/s12014-020-09279-6 |
[31] |
Su X, Ling Y, Liu C, Meng F, Cao J, et al. 2015. Isolation, culture, differentiation, and nuclear reprogramming of Mongolian sheep fetal bone marrow-derived mesenchymal stem cells. Cellular Reprogramming 17:288−96 doi: 10.1089/cell.2014.0109 |
[32] |
Tian Y, Tao L, Zhao S, Tai D, Liu D, et al. 2016. Isolation and morphological characterization of ovine amniotic fluid mesenchymal stem cells. Experimental Animals 65:125−34 doi: 10.1538/expanim.15-0031 |
[33] |
Kajiyama S, Nagashima Y, Funatsu T, Suzuki T, Fukaya M, et al. 2021. Effects of conditioned medium from bone marrow cells on human umbilical cord perivascular cells. Tissue Engineering Part A 27:382−89 doi: 10.1089/ten.TEA.2020.0025 |
[34] |
Ding DC, Chang YH, Shyu WC, Lin SZ. 2015. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplantation 24:339−47 doi: 10.3727/096368915X686841 |
[35] |
Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD. 2013. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry Part A 83A:134−40 doi: 10.1002/cyto.a.22227 |
[36] |
Zhang Q, Yi DY, Xue BZ, Wen WW, Lu YP, et al. 2018. CD90 determined two subpopulations of glioma-associated mesenchymal stem cells with different roles in tumour progression. Cell Death & Disease 9:1101 doi: 10.1038/s41419-018-1140-6 |
[37] |
Su HL. 2012. Neural differentiation of embryonic stem cells: Role of FGFs. In Stem Cells Cancer Stem Cells, ed. Hayat M. vol. 198. Dordrecht: Springer. pp. 249–56. doi: 10.1007/978-94-007-2900-1_24 |
[38] |
Silvano M, Miele E, Valerio M, Casadei L, Begalli F, et al. 2015. Consequences of simulated microgravity in neural stem cells: biological effects and metabolic response. Journal of Stem Cell Research & Therapy 5:289 doi: 10.4172/2157-7633.1000289 |
[39] |
Loizou JI, Oser G, Shukla V, Sawan C, Murr R, et al. 2009. Histone acetyltransferase cofactor Trrap is essential for maintaining the hematopoietic stem/progenitor cell pool. Journal of Immunology 183:6422−31 doi: 10.4049/jimmunol.0901969 |
[40] |
Poole CJ, van Riggelen J. 2017. MYC—master regulator of the cancer epigenome and transcriptome. Genes 8:142 doi: 10.3390/genes8050142 |
[41] |
Khoo MLM, Shen B, Tao H, Ma DDF. 2008. Long-term serial passage and neuronal differentiation capability of human bone marrow mesenchymal stem cells. Stem Cells and Development 17:883−96 doi: 10.1089/scd.2007.0185 |
[42] |
Myers NE, Stokes MG, Nobre AC. 2017. Prioritizing Information during Working Memory: Beyond Sustained Internal Attention. Trends in Cognitive Science 21:449−61 doi: 10.1016/j.tics.2017.03.010 |
[43] |
VanRullen R. 2018. Attention Cycles. Neuron 99:632−34 doi: 10.1016/j.neuron.2018.08.006 |
[44] |
Shan ZY, Wu YS, Li X, Shen XH, Wang ZD, et al. 2014. Continuous passages accelerate the reprogramming of mouse induced pluripotent stem cells. Cellular Reprogramming 16:77−83 doi: 10.1089/cell.2013.0067 |
[45] |
Baouche M, Krawczenko A, Paprocka M, Klimczak A, Mermillod P, et al. 2023. Feline umbilical cord mesenchymal stem cells: Isolation and in vitro characterization from distinct parts of the umbilical cord. Theriogenology 201:116−25 doi: 10.1016/j.theriogenology.2022.11.049 |
[46] |
Shi G, Jin Y. 2010. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Research & Therapy 1:39 doi: 10.1186/scrt39 |
[47] |
Zhou L, Wang J, Huang J, Song X, Wu Y, et al. 2022. The role of mesenchymal stem cell transplantation for ischemic stroke and recent research developments. Frontiers in Neurology 13:1000777 doi: 10.3389/fneur.2022.1000777 |
[48] |
Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, et al. 2016. Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Reports 6:200−12 doi: 10.1016/j.stemcr.2015.12.009 |
[49] |
Andersson ER, Sandberg R, Lendahl U. 2011. Notch signaling: Simplicity in design, versatility in function. Development 138:3593−612 doi: 10.1242/dev.063610 |
[50] |
Jin W. 2020. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells 9(1):217 doi: 10.3390/cells9010217 |
[51] |
Kyriakis JM, Avruch J. 2012. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiological Reviews 92:689−737 doi: 10.1152/physrev.00028.2011 |
[52] |
Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, et al. 2001. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proceedings of the National Academy of Sciences of the United States of America 98:13681−86 doi: 10.1073/pnas.251194298 |
[53] |
Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro SB, et al. 2016. LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell 19:66−80 doi: 10.1016/j.stem.2016.05.009 |
[54] |
Folmes CDL, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, et al. 2011. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism 14:264−71 doi: 10.1016/j.cmet.2011.06.011 |
[55] |
Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, et al. 2005. Glycolytic enzymes can modulate cellular life span. Cancer Research 65:177−85 doi: 10.1158/0008-5472.177.65.1 |