[1] |
Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. 2011. Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie 50(3):586−621 doi: 10.1002/anie.201000044 |
[2] |
Pietta P, Minoggio M, Bramati L. 2003. Plant polyphenols: structure, occurrence and bioactivity. Studies in Natural Products Chemistry 28:257−312 doi: 10.1016/s1572-5995(03)80143-6 |
[3] |
Abbas M, Saeed F, Anjum FM, Afzaal M, Tufail T, et al. 2017. Natural polyphenols: an overview. International Journal of Food Properties 20(8):1689−99 doi: 10.1080/10942912.2016.1220393 |
[4] |
Gharaati Jahromi S. 2019. Extraction techniques of phenolic compounds from plants. In Plant Physiological Aspects of Phenolic Compounds, eds Soto-Hernández M, García-Mateos R, Palma-Tenango M. UK: IntechOpen. pp. 1−18. doi: 10.5772/intechopen.84705 |
[5] |
Hu Y, Yan B, Chen ZS, Wang L, Tang W, et al. 2022. Recent technologies for the extraction and separation of polyphenols in different plants: a review. Journal of Renewable Materials 10(6):1471−90 doi: 10.32604/jrm.2022.018811 |
[6] |
Belščak-Cvitanović A, Durgo K, Huđek A, Bačun-Družina V, Komes D. 2018. Overview of polyphenols and their properties. In Polyphenols: Properties, Recovery, and Applications, ed. Galanakis CM. UK: Woodhead Publishing. pp. 3−44. doi: 10.1016/b978-0-12-813572-3.00001-4 |
[7] |
Coppo E, Marchese A. 2014. Antibacterial activity of polyphenols. Current Pharmaceutical Biotechnology 15(4):380−90 doi: 10.2174/138920101504140825121142 |
[8] |
Zhou Z, Huang Y, Liang J, Ou M, Chen J, et al. 2016. Extraction, purification and anti-radiation activity of persimmon tannin from Diospyros kaki L.f. Journal of Environmental Radioactivity 162−163:182−88 doi: 10.1016/j.jenvrad.2016.05.034 |
[9] |
Omidfar F, Gheybi F, Zareian M, Karimi E. 2023. Polyphenols in food industry, nano-based technology development and biological properties: an overview. eFood 4(3):e88 doi: 10.1002/efd2.88 |
[10] |
Wang R, Tian X, Li Q, Liao L, Wu S, et al. 2022. Walnut pellicle color affects its phenolic composition: free, esterified and bound phenolic compounds in various colored-pellicle walnuts. Journal of Food Composition and Analysis 109:104470 doi: 10.1016/j.jfca.2022.104470 |
[11] |
Thakur A, Kumar A. 2024. Polyphenols for dyes application. In Science and Engineering of Polyphenols: Fundamentals and Industrial Scale Applications, ed. Verma C. US: John Wiley & Sons, Inc. pp. 157−210. doi: 10.1002/9781394203932.ch7 |
[12] |
Saxena S, Raja ASM. 2014. Natural dyes: sources, chemistry, application and sustainability issues. In Roadmap to Sustainable Textiles and Clothing, ed. Muthu S. Singapore: Springer. pp. 37–80. doi: 10.1007/978-981-287-065-0_2 |
[13] |
Kasiri M, Safapour S. 2014. Natural dyes and antimicrobials for green treatment of textiles. Environmental Chemistry Letters 12:1−13 doi: 10.1007/s10311-013-0426-2 |
[14] |
Hamdy D, Hassabo A. 2021. Various natural dyes from different sources. Journal of Textiles, Coloration and Polymer Science 18(2):171−90 |
[15] |
Sk MS, Mia R, Haque MA, Shamim AM. 2021. Review on extraction and application of natural dyes. Textile & Leather Review 4(4):218−33 doi: 10.31881/tlr.2021.09 |
[16] |
Gürses A, Açıkyıldız M, Güneş K, Gürses MS. 2016. Dyeing and dyeing technology. In Dyes and Pigments. Cham: Springer. pp. 47−67. doi: 10.1007/978-3-319-33892-7_4 |
[17] |
Jabar JM, Ogunsade AF, Odusote YA, Yılmaz M. 2023. Utilization of Nigerian mango (Mangifera indica L) leaves dye extract for silk fabric coloration: influence of extraction technique, mordant and mordanting type on the fabric color attributes. Industrial Crops and Products 193:116235 doi: 10.1016/j.indcrop.2022.116235 |
[18] |
Ramli QH, Hassan RM, Nor NM. 2021. Dyeing of textile using different mordants, mordanting techniques and their effects on fastness properties. ASEAN Journal of Life Sciences 1(2):64−67 |
[19] |
Shrivastava A, Dedhia E, Daniel M, Bhattacharya S, Arya A, et al. 2006. Extraction and dyeing methods for natural dyes. In Natural Dyes: Scope and Challenges, eds Arya A, Daniel M, Bhattacharya SD, Raole VM. India: Scientific Publishers. pp. 67−80 |
[20] |
Ali Raza Naqvi S, ul-Wara K, Adeel S, Mia R, Hosseinnezhad M, et al. 2024. Modern ecofriendly approach for extraction of luteolin natural dye from weld for silk fabric and wool yarn dyeing. Sustainable Chemistry and Pharmacy 39:101554 doi: 10.1016/j.scp.2024.101554 |
[21] |
Karabulut K, Atav R. 2020. Dyeing of cotton fabric with natural dyes without mordant usage part I: determining the most suitable dye plants for dyeing and UV protective functionalization. Fibers and Polymers 21:1773−82 doi: 10.1007/s12221-020-9365-2 |
[22] |
Ayele M, Tesfaye T, Alemu D, Limeneh M, Sithole B. 2020. Natural dyeing of cotton fabric with extracts from mango tree: a step towards sustainable dyeing. Sustainable Chemistry and Pharmacy 17:100293 doi: 10.1016/j.scp.2020.100293 |
[23] |
Manyim S, Kiprop AK, Mwasiagi JI, Achisa CM, Odero MP. 2022. Dyeing of cotton fabric with Euclea divinorum extract using response surface optimization method. Research Journal of Textile and Apparel 26(2):109−23 doi: 10.1108/rjta-10-2020-0115 |
[24] |
Koyuncu M. 2024. Adsorption, kinetics, and thermodynamic study of dyeing the Scutellaria Orientalis L as an eco-friendly natural colourant on cotton fabric. Industria Textila 75:203−11 doi: 10.35530/it.075.02.202310 |
[25] |
Rani J, Guru R, Singh J, Santhanam S. 2024. Eco-dyeing and functional finishing of cotton fabric using a natural colour derived from Lotus seed: enhanced fastness properties with chitosan. Textile & Leather Review 7:1039−60 doi: 10.31881/tlr.2024.099 |
[26] |
Rosyida A, Suranto, Masykuri M, Margono. 2022. Minimisation of pollution in the cotton fabric dyeing process with natural dyes by the selection of mordant type. Research Journal of Textile and Apparel 26:41−56 doi: 10.1108/rjta-08-2020-0098 |
[27] |
Rani J, Guru R, Singh J, Fangueiro R, Santhanam S. 2024. Applying giloy stems dye to silk and lyocell fabrics to improve their antimicrobial and fastness properties using bio-mordant. Textile & Leather Review 7:1197−215 doi: 10.31881/tlr.2024.117 |
[28] |
Haji A, Vadood M. 2023. Prediction of color coordinates of cotton fabric dyed with binary mixtures of madder and weld natural dyes using artificial intelligence. Fibers and Polymers 24(5):1759−69 doi: 10.1007/s12221-023-00184-x |
[29] |
Hosseinnezhad M, Safapour S. 2024. Sources, chemistry, classification, challenges, and prospects of renewable dyes and pigments. In Renewable Dyes and Pigmentsed. Ul Islam S. Amsterdam: Elsevier. pp. 1−18. doi: 10.1016/b978-0-443-15213-9.00001-6 |
[30] |
Baaka N, Adeel S, Anjum F, Ali A, Abdelghaffar RA. 2023. Dyes and pigments from agricultural wastes in the coloration of textiles. Natural Dyes and Sustainability, ed. Muthu, SS. Cham: Springer. pp. 45–61. doi: 10.1007/978-3-031-47471-2_3 |
[31] |
Serrano A, Sousa MM, Hallett J, Lopes JA, Oliveira MC. 2011. Analysis of natural red dyes (cochineal) in textiles of historical importance using HPLC and multivariate data analysis. Analytical and Bioanalytical Chemistry 401:735−43 doi: 10.1007/s00216-011-5094-0 |
[32] |
El Newehy NM, Abd-Alhaseeb MM, Omran GA, Harraz FM, Shawky E. 2022. Comparative metabolomics reveal intraspecies variability in bioactive compounds of different cultivars of pomegranate fruit (Punica granatum L.) and their waste by-products. Journal of the Science of Food and Agriculture 102(13):5891−902 doi: 10.1002/jsfa.11940 |
[33] |
Pu F, Ren XL, Zhang XP. 2013. Phenolic compounds and antioxidant activity in fruits of six Diospyros kaki genotypes. European Food Research and Technology 237:923−32 doi: 10.1007/s00217-013-2065-z |
[34] |
Liu Y, Zhao G, Li X, Shen Q, Wu Q, et al. 2020. Comparative analysis of phenolic compound metabolism among tea plants in the section Thea of the genus Camellia. Food Research International 135:109276 doi: 10.1016/j.foodres.2020.109276 |
[35] |
Ni B, Liu H, Wang Z, Zhang G, Sang Z, et al. 2024. A chromosome-scale genome of Rhus chinensis Mill. provides new insights into plant–insect interaction and gallotannins biosynthesis. The Plant Journal 118:766−86 doi: 10.1111/tpj.16631 |
[36] |
Silva ME Jr, Araújo MVRL, Santana AA, Silva FLH, Maciel MIS. 2021. Ultrasound-assisted extraction of bioactive compounds from ciriguela (Spondias purpurea L.) peel: optimization and comparison with conventional extraction and microwave. Arabian Journal of Chemistry 14(8):103260 doi: 10.1016/j.arabjc.2021.103260 |
[37] |
Amir-Al Zumahi SM, Arobi N, Taha H, Hossain MK, Kabir H, et al. 2020. Extraction, optical properties, and aging studies of natural pigments of various flower plants. Heliyon 6:e05104 doi: 10.1016/j.heliyon.2020.e05104 |
[38] |
Handayani PA, Chafidz A, Ramadani NS, Kartika D. 2019. Microwave assisted extraction (MAE) process of tannin from mangrove propagules waste as natural dye for coloring Batik tulis. Key Engineering Materials 805:128−33 doi: 10.4028/www.scientific.net/kem.805.128 |
[39] |
Rahman MM, Kim M, Youm K, Kumar S, Koh J, et al. 2023. Sustainable one-bath natural dyeing of cotton fabric using turmeric root extract and chitosan biomordant. Journal of Cleaner Production 382:135303 doi: 10.1016/j.jclepro.2022.135303 |
[40] |
Varadarajan G, Venkatachalam P. 2016. Sustainable textile dyeing processes. Environmental Chemistry Letters 14:113−22 doi: 10.1007/s10311-015-0533-3 |
[41] |
Darmawan A, Widowati, Riyadi A, Muhtar H, Kartono, et al. 2024. Enhancing cotton fabric dyeing: Optimizing Mordanting with natural dyes and citric acid. International Journal of Biological Macromolecules 276:134017 doi: 10.1016/j.ijbiomac.2024.134017 |
[42] |
Benli H. 2024. Bio-mordants: a review. Environmental Science and Pollution Research 31(14):20714−71 doi: 10.1007/s11356-024-32174-8 |
[43] |
Wu Y, Huang X, Yang H, Zhang S, Lyu L, et al. 2023. Analysis of flavonoid-related metabolites in different tissues and fruit developmental stages of blackberry based on metabolome analysis. Food Research International 163:112313 doi: 10.1016/j.foodres.2022.112313 |
[44] |
Dabas D. 2016. Polyphenols as colorants. Advances in Food Technology and Nutritional Sciences SE:S1−S6 |
[45] |
Shahid-Ul-Islam, Butola BS, Roy A. 2018. Chitosan polysaccharide as a renewable functional agent to develop antibacterial, antioxidant activity and colourful shades on wool dyed with tea extract polyphenols. International Journal of Biological Macromolecules 120:1999−2006 doi: 10.1016/j.ijbiomac.2018.09.167 |
[46] |
Yusuf M, Ahmad Khan S, Shabbir M, Mohammad F. 2016. Developing a shade range on wool by madder (Rubia cordifolia) root extract with gallnut (Quercus infectoria) as biomordant. Journal of Natural Fibers 14(4):597−607 doi: 10.1080/15440478.2016.1240641 |
[47] |
Mohan R, Geetha N, Haritha Jennifer D, Sivakumar V. 2020. Studies on natural dye (pelargonidin) extraction from onion peel and application in dyeing of leather. International Journal of Recent Engineering Science 7:12−16 doi: 10.14445/23497157/ijres-v7i1p103 |
[48] |
Yang TT, Guan JP, Chen G, Tang RC. 2018. Instrumental characterization and functional assessment of the two-color silk fabric coated by the extract from Dioscorea cirrhosa tuber and mordanted by iron salt-containing mud. Industrial Crops and Products 111:117−25 doi: 10.1016/j.indcrop.2017.10.016 |
[49] |
Singh S, Sharma A, Monga V, Bhatia R. 2023. Compendium of naringenin: potential sources, analytical aspects, chemistry, nutraceutical potentials and pharmacological profile. Critical Reviews in Food Science and Nutrition 63(27):8868−99 doi: 10.1080/10408398.2022.2056726 |
[50] |
Pranta AD, Rahaman MT. 2024. Extraction of eco-friendly natural dyes and biomordants for textile coloration: a critical review. Nano-Structures & Nano-Objects 39:101243 doi: 10.1016/j.nanoso.2024.101243 |
[51] |
Arora J, Agarwal P, Gupta G. 2017. Rainbow of natural dyes on textiles using plants extracts: sustainable and eco-friendly processes. Green and Sustainable Chemistry 7:35−47 doi: 10.4236/gsc.2017.71003 |
[52] |
Zannat A, Uddin MN, Mahmud ST, Mia R, Ahmed T. 2024. Natural dyes and pigments in functional finishing. In Renewable Dyes and Pigments, ed. Islam Ul. Amsterdam: Elsevier. pp. 271−87. doi: 10.1016/b978-0-443-15213-9.00012-0 |
[53] |
Jose S, Thomas S, Sankaran A, Medha K. Functional aspects of natural dyes. 2022. Textile Dyes and Pigments: A Green Chemistry Approach, eds Pandit P, Singha K, Maity S, Ahmed S. US: Scrivener Publishing LLC. pp. 267−94. doi: 10.1002/9781119905332.ch14 |
[54] |
Yadav S, Tiwari KS, Gupta C, Tiwari MK, Khan A, et al. 2023. A brief review on natural dyes, pigments: recent advances and future perspectives. Results in Chemistry 5:100733 doi: 10.1016/j.rechem.2022.100733 |
[55] |
Fried R, Oprea I, Fleck K, Rudroff F. 2022. Biogenic colourants in the textile industry – a promising and sustainable alternative to synthetic dyes. Green Chemistry 24:13−35 doi: 10.1039/D1GC02968A |
[56] |
Prabhu K, Bhute AS. 2012. Plant based natural dyes and mordnats: a review. Journal of Natural Product and Plant Resources 2(6):649−64 |
[57] |
Repon MR, Dev B, Rahman MA, Jurkonienė S, Haji A, et al. 2024. Textile dyeing using natural mordants and dyes: a review. Environmental Chemistry Letters 22(3):1473−520 doi: 10.1007/s10311-024-01716-4 |
[58] |
Ali Khan M, Shahid-Ul-Islam, Mohammad F. 2016. Extraction of natural dye from walnut bark and its dyeing properties on wool yarn. Journal of Natural Fibers 13(4):458−69 doi: 10.1080/15440478.2015.1055033 |
[59] |
Safapour S, Rather LJ, Moradnejad J, Mir SS. 2023. Functional and colorful wool textiles through ecological dyeing with lemon balm bio-dyes and mordants. Fibers and Polymers 24(12):4357−70 doi: 10.1007/s12221-023-00397-0 |
[60] |
Zhang Y, Zhou Q, Rather LJ, Li Q. 2021. Agricultural waste of Eriobotrya japonica L. (Loquat) seeds and flora leaves as source of natural dye and bio-mordant for coloration and bio-functional finishing of wool textile. Industrial Crops and Products 169:113633 doi: 10.1016/j.indcrop.2021.113633 |
[61] |
Hosseinnezhad M, Gharanjig K, Rouhani S, Razani N, Imani H. 2022. Environmentally friendly dyeing of wool yarns using of combination of bio-mordants and natural dyes. Environmental Progress & Sustainable Energy 41(5):e13868 doi: 10.1002/ep.13868 |
[62] |
Erdem İşmal Ö, Yıldırım L, Özdoğan E. 2015. Valorisation of almond shell waste in ultrasonic biomordanted dyeing: alternatives to metallic mordants. The Journal of the Textile Institute 106(4):343−53 doi: 10.1080/00405000.2014.949503 |
[63] |
Shahmoradi Ghaheh F, Moghaddam MK, Tehrani M. 2021. Comparison of the effect of metal mordants and bio-mordants on the colorimetric and antibacterial properties of natural dyes on cotton fabric. Coloration Technology 137(6):689−98 doi: 10.1111/cote.12569 |