[1]

Wu YF, Zhong XL, Hu X, Ren DC, Lv GH, et al. 2014. Frost affects grain yield components in winter wheat. New Zealand Journal of Crop Horticulture Science 42:194−204

doi: 10.1080/01140671.2014.887588
[2]

Braun HJ, Ekiz H, Eser V, Keser M, Ketata H, et al. 1997. Breeding priorities of winter wheat programs. In Wheat: Prospects for Global Improvement, eds Braun HJ, Altay F, Kronstad WE, Beniwal SPS, McNab A. Dordrecht: Springer. Vol 6. pp. 553–60. doi: 10.1007/978-94-011-4896-2_72

[3]

Yoshida M. 2021. Fructan structure and metabolism in overwintering plants. Plants 10(5):933

doi: 10.3390/plants10050933
[4]

Gudleifsson BE, Larsen A. 2018. Ice encasement as a component of winter kill in herbage plants. In Advances in Plant Cold, ed. Li PH. Boca Raton: CRC Press. pp. 229−49. doi: 10.1201/9781351069526-17

[5]

Vose RS, Easterling DR, Kunkel KE, LeGrande AN, Wehner MF. 2017. Temperature changes in the United States. In Climate Science Special Report: Fourth National Climate Assessment, eds Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, et al. Washington, DC, USA: U.S. Global Change Research Program. Volume I. pp. 185−206. doi: 10.7930/J0N29V45

[6]

Holen DL, Bruckner PL, Martin JM, Carlson GR, Wichman DM, et al. 2001. Response of winter wheat to simulated stand reduction. Agronomy Journal 93:364−70

doi: 10.2134/agronj2001.932364x
[7]

Stringer P. 1999. Montana agricultural statistics. Helena, MT: Montana Department Agriculture.

[8]

Andrews CJ, Pomeroy MK. 1989. Metabolic acclimation to hypoxia in winter cereals: low temperature flooding increases adenylates and survival in ice encasement. Plant Physiology 91:1063−68

doi: 10.1104/pp.91.3.1063
[9]

Andrews CJ, Gudleifsson BE. 1983. A comparison of cold hardiness and ice encasement tolerance of timothy grass and winter wheat. Canadian Journal of Plant Science 63:429−35

doi: 10.4141/cjps83-049
[10]

Andrews CJ. 1996. How do plants survive ice? Annals of Botany 78:529−36

doi: 10.1006/anbo.1996.0157
[11]

Gooding MJ, Ellis RH, Shewry PR, Schofield JD. 2003. Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. Journal of Cereal Science 37:295−309

doi: 10.1006/jcrs.2002.0501
[12]

Cloutier Y, Siminovitch D. 1982. Correlation between cold- and drought-induced frost hardiness in winter wheat and rye varieties. Plant Physiology 69:256−58

doi: 10.1104/pp.69.1.256
[13]

Cloutier Y, Andrews CJ. 1984. Efficiency of cold hardiness induction by desiccation stress in four winter cereals. Plant Physiology 76:595−98

doi: 10.1104/pp.76.3.595
[14]

Lozinskiy M, Burdenyuk-Tarasevych L, Grabovskyi M, Grabovska T, Roubík H. 2023. Winter wheat (T. aestivum L. ) yield depending on the duration of autumn vegetation and the terms of spring vegetation recovery: 50-years study in Ukraine. Scientific Papers Series A. Agronomy 66(1):406−15

[15]

Zhang Y, Liu L, Chen X, Li J. 2022. Effects of low-temperature stress during the anther differentiation period on winter wheat photosynthetic performance and spike-setting characteristics. Plants 11:389

doi: 10.3390/plants11030389
[16]

Rochaix JD. 2011. Assembly of the photosynthetic apparatus. Plant Physiology 155:1493−500

doi: 10.1104/pp.110.169839
[17]

Batra NG, Sharma V, Kumari N. 2014. Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. Journal Plant Interactions 9:712−21

doi: 10.1080/17429145.2014.905801
[18]

Choudhury NK, Behera RK. 2001. Photoinhibition of photosynthesis: role of carotenoids in photoprotection of chloroplast constituents. Photosynthetica 39:481−88

doi: 10.1023/A:1015647708360
[19]

Zaks J, Amarnath K, Sylak-Glassman EJ, Fleming GR. 2013. Models and measurements of energy-dependent quenching. Photosynthesis Research 116:389−409

doi: 10.1007/s11120-013-9857-7
[20]

Lichtenthaler HK, Rinderle U. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. C R C Critical Review in Analytical Chemistry 19:S29−S85

doi: 10.1080/15476510.1988.10401466
[21]

Tietz S, Hall CC, Cruz JA, Kramer DM. 2017. NPQ(T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant, Cell & Environment 40:1243−55

doi: 10.1111/pce.12924
[22]

Kramer DM, Johnson G, Kiirats O, Edwards GE. 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research 79:209−18

doi: 10.1023/B:PRES.0000015391.99477.0d
[23]

Das K, Roychoundhury A. 2014. Reactive oxygen species (ROS) and response to antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2:53

doi: 10.3389/fenvs.2014.00053
[24]

Janmohammadi M, Enayati V, Sabaghnia N. 2012. Impact of cold acclimation, de-acclimation and re-acclimation on carbohydrate content and antioxidant enzyme activities in spring and winter wheat. Icelandic Agricultural Sciences 25:3−11

[25]

Cruz JA, Savage LJ, Zegarac R, Hall CC, Satoh-Cruz M, et al. 2016. Dynamic environmental photosynthetic imaging reveals emergent phenotypes. Cell Systems 2:365−77

doi: 10.1016/j.cels.2016.06.001
[26]

Dhindsa RS, Dhindsa PP, Thorpe TA. 1981. Leaf senescence: correlation with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32:93−101

doi: 10.1093/jxb/32.1.93
[27]

Zhang JX, Kirkham MB. 1994. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant and Cell Physiology 35:785−91

doi: 10.1093/oxfordjournals.pcp.a078658
[28]

Nakano Y, Assada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867−80

doi: 10.1093/oxfordjournals.pcp.a076232
[29]

Chance B, Maehly AC. 1955. Assay of catalase and peroxidase. Methods in Enzymology 2:764−75

doi: 10.1016/S0076-6879(55)02300-8
[30]

He J, Chen F, Chen S, Lv G, Deng Y, et al. 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. Journal of Plant Physiology 168:687−93

doi: 10.1016/j.jplph.2010.10.009
[31]

Lê S, Josse J, Husson F. 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25(1):1−18

doi: 10.18637/jss.v025.i01
[32]

Rizza F, Pagani D, Stanca AM, Cattivelli L. 2001. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breeding 12:389−96

doi: 10.1046/j.1439-0523.2001.00635.x
[33]

Hurry VM, Huner NPA. 1992. Effects of cold hardening on sensitivity of winter and spring wheat leaves to short-term photoinhibition and recovery of photosynthesis. Plant Physiology 100:1283−90

doi: 10.1104/pp.100.3.1283
[34]

Malnoë A. 2018. Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. Environmental and Experimental Botany 154:123−33

doi: 10.1016/j.envexpbot.2018.05.005
[35]

Blokhina OB, Fagerstedt KV, Chirkova TK. 1999. Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration. Physiologia Plantarum 105:625−32

doi: 10.1034/j.1399-3054.1999.105405.x
[36]

Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, et al. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391−95

doi: 10.1038/35000131
[37]

Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, et al. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857−61

doi: 10.1126/science.aai8878