[1] |
Richards GA, McMillian MM, Gemmen RS, Rogers WA, Cully SR. 2001. Issues for low-emission, fuel-flexible power systems. Progress in Energy and Combustion Science 27:141−69 doi: 10.1016/S0360-1285(00)00019-8 |
[2] |
Blakey S, Rye L, Wilson CW. 2011. Aviation gas turbine alternative fuels: A review. Proceedings of the Combustion Institute 33:2863−85 doi: 10.1016/j.proci.2010.09.011 |
[3] |
Bayindirli C, Celik M. 2019. Investigation of combustion and emission characteristics of n-hexane and n-hexadecane additives in diesel fuel. Journal of Mechanical Science and Technology 33:1937−46 doi: 10.1007/s12206-019-0344-8 |
[4] |
Çeli̇k M, Bayindirli C. 2020. Enhancement performance and exhaust emissions of rapeseed methyl ester by using n-hexadecane and n-hexane fuel additives. Energy 202:117643 doi: 10.1016/j.energy.2020.117643 |
[5] |
Zhong A, Li X, Turányi T, Huang Z, Han D. 2022. Pyrolysis and oxidation of a light naphtha fuel and its surrogate blend. Combustion and Flame 240:111979 doi: 10.1016/j.combustflame.2021.111979 |
[6] |
Li W, Wang GQ, Li YY, Li TY, Zhang Y, et al. 2018. Experimental and kinetic modeling investigation on pyrolysis and combustion of n-butane and i-butane at various pressures. Combustion and Flame 191:126−41 doi: 10.1016/j.combustflame.2018.01.002 |
[7] |
Li W, Zhang Y, Mei BW, Li YY, Cao CC, et al. 2019. Experimental and kinetic modeling study of n-propanol and i-propanol combustion: Flow reactor pyrolysis and laminar flame propagation. Combustion and Flame 207:171−85 doi: 10.1016/j.combustflame.2019.05.040 |
[8] |
Li W, Mei BW, Li YY, Eckart S, Krause H, et al. 2021. Insight into fuel isomeric effects on laminar flame propagation of pentanones. Proceedings of the Combustion Institute 38:2135−42 doi: 10.1016/j.proci.2020.06.113 |
[9] |
Zhang Y, Mei BW, Zhang XY, Ma SY, Li YY. 2021. Exploring fuel isomeric effects on laminar flame propagation of butylbenzenes at various pressures. Proceedings of the Combustion Institute 38:2419−29 doi: 10.1016/j.proci.2020.06.168 |
[10] |
Ribaucour M, Minetti R, Sochet LR, Curran HJ, Pitz WJ, Westbrook CK. 2000. Ignition of isomers of pentane: An experimental and kinetic modeling study. Proceedings of the Combustion Institute 28:1671−78 doi: 10.1016/S0082-0784(00)80566-4 |
[11] |
Silke EJ, Curran HJ, Simmie JM. 2005. The influence of fuel structure on combustion as demonstrated by the isomers of heptane: a rapid compression machine study. Proceedings of the Combustion Institute 30:2639−47 doi: 10.1016/j.proci.2004.08.180 |
[12] |
Zhang KW, Banyon C, Burke U, Kukkadapu G, Wagnon SW, et al. 2019. An experimental and kinetic modeling study of the oxidation of hexane isomers: Developing consistent reaction rate rules for alkanes. Combustion and Flame 206:123−37 doi: 10.1016/j.combustflame.2019.04.011 |
[13] |
Zhang Y, Zhang X, Cao C, Zou J, Li T, et al. 2021. Flow reactor pyrolysis of iso-butylbenzene and tert-butylbenzene at various pressures: Insight into fuel isomeric effects on pyrolysis chemistry of butylbenzenes. Proceedings of the Combustion Institute 38:1423−32 doi: 10.1016/j.proci.2020.06.222 |
[14] |
Lovell WG. 1948. Knocking characteristics of hydrocarbons. Industrial & Engineering Chemistry 40:2388−438 |
[15] |
McEnally CS, Pfefferle LD. 2007. Improved sooting tendency measurements for aromatic hydrocarbons and their implications for naphthalene formation pathways. Combustion and Flame 148:210−22 doi: 10.1016/j.combustflame.2006.11.003 |
[16] |
Mével R, Chatelain K, Boettcher PA, Dayma G, Shepherd JE. 2014. Low temperature oxidation of n-hexane in a flow reactor. Fuel 126:282−93 doi: 10.1016/j.fuel.2014.02.072 |
[17] |
Wang Z, Herbinet O, Cheng Z, Husson B, Fournet R, et al. 2014. Experimental investigation of the low temperature oxidation of the five isomers of hexane. The Journal of Physical Chemistry A 118:5573−94 doi: 10.1021/jp503772h |
[18] |
Zhang KW, Banyon C, Togbe C, Dagaut P, Bugler J, Curran HJ. 2015. An experimental and kinetic modeling study of n-hexane oxidation. Combustion and Flame 162:4194−207 doi: 10.1016/j.combustflame.2015.08.001 |
[19] |
Yasunaga K, Yamada H, Oshita H, Hattori K, Hidaka Y, Curran H. 2017. Pyrolysis of n-pentane, n-hexane and n-heptane in a single pulse shock tube. Combustion and Flame 185:335−45 doi: 10.1016/j.combustflame.2017.07.027 |
[20] |
Kathrotia T, Oßwald P, Köhler M, Slavinskaya N, Riedel U. 2018. Experimental and mechanistic investigation of benzene formation during atmospheric pressure flow reactor oxidation of n-hexane, n-nonane, and n-dodecane below 1200 K. Combustion and Flame 194:426−38 doi: 10.1016/j.combustflame.2018.05.027 |
[21] |
Belhadj N, Lailliau M, Benoit R, Dagaut P. 2021. Experimental and kinetic modeling study of n-hexane oxidation. Detection of complex low-temperature products using high-resolution mass spectrometry. Combustion and Flame 233:111581 doi: 10.1016/j.combustflame.2021.111581 |
[22] |
Burcat A, Olchanski E, Sokolinski C. 1996. Kinetics of hexane combustion in a shock tube. Israel Journal of Chemistry 36:313−20 doi: 10.1002/ijch.199600043 |
[23] |
Burcat A, Olchanski E, Sokolinski C. 1999. 2-Methyl-pentane ignition kinetics in a shock-tube. Combustion Science and Technology 147:1−37 doi: 10.1080/00102209908924210 |
[24] |
Zhukov VP, Sechenov VA, Starikovskii AY. 2004. Ignition delay times in lean n-hexane-air mixture at high pressures. Combustion and Flame 136:257−59 doi: 10.1016/j.combustflame.2003.10.002 |
[25] |
Figueroa-Labastida M, Kashif TA, Farooq A. 2023. Dual-camera high-speed imaging of n-hexane oxidation in a high-pressure shock tube. Combustion and Flame 248:112586 doi: 10.1016/j.combustflame.2022.112586 |
[26] |
Subburaj J, Kashif TA, Farooq A. 2023. Methane and n-hexane ignition in a newly developed diaphragmless shock tube. Combustion and Flame 253:112818 doi: 10.1016/j.combustflame.2023.112818 |
[27] |
Davis SG, Law CK. 1998. Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combustion Science and Technology 140:427−49 doi: 10.1080/00102209808915781 |
[28] |
Ji C, Dames E, Wang YL, Wang H, Egolfopoulos FN. 2010. Propagation and extinction of premixed C5-C12 n-alkane flames. Combustion and Flame 157:277−87 doi: 10.1016/j.combustflame.2009.06.011 |
[29] |
Kelley AP, Smallbone AJ, Zhu DL, Law CK. 2011. Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch sensitivity. Proceedings of the Combustion Institute 33:963−70 doi: 10.1016/j.proci.2010.06.074 |
[30] |
Burluka AA, Gaughan RG, Griffiths JF, Mandilas C, Sheppard CGW, Woolley R. 2016. Turbulent burning rates of gasoline components, Part 1 - Effect of fuel structure of C6 hydrocarbons. Fuel 167:347−56 doi: 10.1016/j.fuel.2015.11.020 |
[31] |
Li X, Hu E, Lu X, Huang S, Huang Z. 2019. Experimental and kinetic study on laminar flame speeds of hexene isomers and n-hexane. Fuel 243:533−40 doi: 10.1016/j.fuel.2019.01.143 |
[32] |
Konnov AA, Mohammad A, Kishore VR, Kim NI, Prathap C, Kumar S. 2018. A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel + air mixtures. Progress in Energy and Combustion Science 68:197−267 doi: 10.1016/j.pecs.2018.05.003 |
[33] |
Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, et al. 2012. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Progress in Energy and Combustion Science 38:468−501 doi: 10.1016/j.pecs.2012.03.004 |
[34] |
Matras D, Villermaux J. 1973. Un réacteur continu parfaitement agité par jets gazeux pour l'étude cinétique de réactions chimiques rapides. Chemical Engineering Science 28:129−37 doi: 10.1016/0009-2509(73)85093-6 |
[35] |
David R, Matras D. 1975. Règies de construction et d'extrapolation des réacteurs auto-agités par jets gazeux. The Canadian Journal of Chemical Engineering 53:297−300 doi: 10.1002/cjce.5450530309 |
[36] |
Battin-Leclerc F, Herbinet O, Glaude PA, Fournet R, Zhou ZY, et al. 2010. Experimental confirmation of the low-temperature oxidation scheme of alkanes. Angewandte Chemie-International Edition 49:3169−72 doi: 10.1002/anie.200906850 |
[37] |
Zhang XY, Li YY, Cao CC, Zou JB, Zhang Y, et al. 2019. New insights into propanal oxidation at low temperatures: An experimental and kinetic modeling study. Proceedings of the Combustion Institute 37:565−73 doi: 10.1016/j.proci.2018.06.173 |
[38] |
Wang ZD, Bian HT, Wang Y, Zhang LD, Li YY, et al. 2015. Investigation on primary decomposition of ethylcyclohexane at atmospheric pressure. Proceedings of the Combustion Institute 35:367−75 doi: 10.1016/j.proci.2014.05.119 |
[39] |
Mei BW, Zhang XY, Ma SY, Cui ML, Guo HW, et al. 2019. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combustion and Flame 210:236−46 doi: 10.1016/j.combustflame.2019.08.033 |
[40] |
Wang ZD, Zhao L, Wang Y, Bian HT, Zhang LD, et al. 2015. Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study. Combustion and Flame 162:2873−92 doi: 10.1016/j.combustflame.2015.03.017 |
[41] |
Sun WY, Yang B, Hansen N, Westbrook CK, Zhang F, et al. 2016. An experimental and kinetic modeling study on dimethyl carbonate (DMC) pyrolysis and combustion. Combustion and Flame 164:224−38 doi: 10.1016/j.combustflame.2015.11.019 |
[42] |
Wang GQ, Li YY, Yuan WH, Zhou ZBA, Wang Y, Wang ZZ. 2017. Investigation on laminar burning velocities of benzene, toluene and ethylbenzene up to 20 atm. Combustion and Flame 184:312−23 doi: 10.1016/j.combustflame.2017.06.017 |
[43] |
Bradley D, Gaskell PH, Gu XJ. 1996. Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: A computational study. Combustion and Flame 104:176−98 doi: 10.1016/0010-2180(95)00115-8 |
[44] |
Burke MP, Chen Z, Ju YG, Dryer FL. 2009. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combustion and Flame 156:771−79 doi: 10.1016/j.combustflame.2009.01.013 |
[45] |
Kelley AP, Jomaas G, Law CK. 2009. Critical radius for sustained propagation of spark-ignited spherical flames. Combustion and Flame 156:1006−13 doi: 10.1016/j.combustflame.2008.12.005 |
[46] |
Zhang XY, Lailliau M, Cao CC, Li YY, Dagaut P, et al. 2019. Pyrolysis of butane-2, 3-dione from low to high pressures: Implications for methyl-related growth chemistry. Combustion and Flame 200:69−81 doi: 10.1016/j.combustflame.2018.11.003 |
[47] |
Peukert SL, Sivaramakrishnan R, Michael JV. 2015. High temperature rate constants for H/D + n-C4H10 and i-C4H10. Proceedings of the Combustion Institute 35:171−79 doi: 10.1016/j.proci.2014.05.104 |
[48] |
Orme JP, Curran HJ, Simmie JM. 2006. Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation. The Journal of Physical Chemistry A 110:114−31 doi: 10.1021/jp0543678 |
[49] |
Goos E, Hippler H, Hoyermann K, Jürges B. 2001. Reactions of methyl radicals with isobutane at temperatures between 800 and 950 Kelvin. International Journal of Chemical Kinetics 33:732−40 doi: 10.1002/kin.1070 |
[50] |
Badra J, Elwardany A, Farooq A. 2015. Shock tube measurements of the rate constants for seven large alkanes + OH. Proceedings of the Combustion Institute 35:189−96 doi: 10.1016/j.proci.2014.05.098 |
[51] |
CHEMKIN-PRO 15092. 2009. Reaction Design. San Diego |
[52] |
Miller JA, Klippenstein SJ. 2003. The recombination of propargyl radicals and other reactions on a C6H6 potential. The Journal of Physical Chemistry A 107:7783−99 |
[53] |
Ji CS, Sarathy SM, Veloo PS, Westbrook CK, Egolfopoulos FN. 2012. Effects of fuel branching on the propagation of octane isomers flames. Combustion and Flame 159:1426−36 doi: 10.1016/j.combustflame.2011.12.004 |