[1] |
Zheng L, Song F, Sun M, Liu W. 2006. Woody oil tree species: Vernicia montana. Deciduous Fruit 38:12−13 doi: 10.3969/j.issn.1002-2910.2006.02.006 |
[2] |
He Z, Liu C, Wang X, Wang R, Cheng Y, et al. 2020. Assessment of genetic diversity in Camellia oleifera Abel. accessions using morphological traits and simple sequence repeat (SSR) markers. Breeding Science 70(5):586−93 doi: 10.1270/jsbbs.20066 |
[3] |
Zhang D, Fu S, Wang Z, Yang F, Yuan J, et al. 2024. The differences of nutrient composition of seeds of Xanthoceras sorbifolia in different regions. South-central Agricultural Science and Technology 45:27−30 doi: 10.3969/j.issn.1007-273X.2024.10.007 |
[4] |
Liang Q, Fang H, Liu J, Zhang B, Bao Y, et al. 2021. Analysis of the nutritional components in the kernels of yellowhorn (Xanthoceras sorbifolium Bunge) accessions. Journal of Food Composition and Analysis 100:103925 doi: 10.1016/j.jfca.2021.103925 |
[5] |
Zhang L, Wang B, Ji X, Wang J. 2011. Investigation on fruit characteristics and seed oil content of different provenances of Vernicia montana in Inner Mongolia. Inner Mongolia Forestry Science and Technology 37(3):16−17,20 |
[6] |
Yao Z, Qi J, Yin L. 2013. Biodiesel production from Xanthoceras sorbifolia in China: opportunities and challenges. Renewable and Sustainable Energy Reviews 24:57−65 doi: 10.1016/j.rser.2013.03.047 |
[7] |
Wu D, Jiang C, Xie X, Wang L, Zhao Y, et al. 2022. Research progress on germplasm resources of Xanthoceras sorbifolium Bunge. Botanical Research 11(6):622−29 doi: 10.12677/BR.2022.116076 |
[8] |
Li Y, Luo G. 2022. A brief analysis of the economic value and benefit of Xanthoceras sorbifolium Bunge. Modern Horticulture 45(1):48−49 doi: 10.14051/j.cnki.xdyy.2022.01.016 |
[9] |
Mazzola M, Manici LM. 2012. Apple replant disease: role of microbial ecology in cause and control. Annual Review of Phytopathology 50:45−65 doi: 10.1146/annurev-phyto-081211-173005 |
[10] |
Wang G, Yin C, Pan F, Wang X, Xiang L, et al. 2018. Analysis of the fungal community in apple replanted soil around Bohai Gulf. Horticultural Plant Journal 4:175−81 doi: 10.1016/j.hpj.2018.05.003 |
[11] |
Chen R, Jiang W, Liu Y, Wang Y, Fan H, et al. 2021. Amygdalin and benzoic acid on the influences of the soil environment and growth of Malus hupehensis Rehd. seedlings. ACS Omega 6:12522−29 doi: 10.1021/acsomega.1c00206 |
[12] |
Qin L, Li X, Jiang W, Liu Y, Yin C, et al. 2024. Effect of aged cherry orchard soil on the potted seedling growth of Malus hupehensis (Pamp.) Rehd. Horticulturae 10:223 doi: 10.3390/horticulturae10030223 |
[13] |
Ma Z, Guan Z, Liu Q, Hu Y, Liu L, et al. 2023. Obstacles in continuous crop: mechanisms and control measures. Advances in Agronomy 179:205−56 doi: 10.1016/bs.agron.2023.01.004 |
[14] |
Garrett KA, Forbes GA, Savary S, Skelsey P, Sparks AH, et al. 2011. Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathology 60(1):15−30 doi: 10.1111/j.1365-3059.2010.02409.x |
[15] |
Krupinsky JM, Bailey KL, McMullen MP, Gossen BD, Turkington TK. 2002. Managing plant disease risk in diversified crop systems. Agronomy Journal 94(2):198−209 doi: 10.2134/agronj2002.1980 |
[16] |
Elad Y, Pertot I. 2014. Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement 28(1):99−139 doi: 10.1080/15427528.2014.865412 |
[17] |
Brussaard L, De Ruiter PC, Brown GG. 2007. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment 121:233−44 doi: 10.1016/j.agee.2006.12.013 |
[18] |
Shen Z, Penton CR, Lv N, Xue C, Yuan X, et al. 2018. Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans. Microbial Ecology 75:739−50 doi: 10.1007/s00248-017-1052-5 |
[19] |
Gao L, Liu X, Du Y, Zong H, Shen G. 2019. Effects of tobacco–peanut relay intercropping on soil bacteria community structure. Annals of Microbioloy 69:1531−36 doi: 10.1007/s13213-019-01537-9 |
[20] |
Li R, Shen Z, Sun L, Zhang R, Fu L, et al. 2016. Novel soil fumigation method for suppressing cucumber Fusarium wilt disease associated with soil microflora alterations. Applied Soil Ecology 101:28−36 doi: 10.1016/j.apsoil.2016.01.004 |
[21] |
Wu J, Jiao Z, Zhou J, Zhang W, Xu S, et al. 2018. Effects of intercropping on rhizosphere soil bacterial communities in Amorphophallus konjac. Open Journal of Soil Science 8:225−39 doi: 10.4236/ojss.2018.89018 |
[22] |
Li X, Ding C, Zhang T, Wang X. 2014. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biology and Biochemistry 72:11−18 doi: 10.1016/j.soilbio.2014.01.019 |
[23] |
Pavlou GC, Vakalounakis DJ. 2005. Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Protection 24:135−40 doi: 10.1016/j.cropro.2004.07.003 |
[24] |
Gil VS, Haro R, Oddino C, Kearney M, Zuza M, et al. 2008. Crop management practices in the control of peanut diseases caused by soil borne fungi. Crop Protection 27:1−9 doi: 10.1016/j.cropro.2007.03.010 |
[25] |
Mbarga JB, Ten Hoopen GM, Kuaté J, Adiobo A, Ngonkeu MEL, et al. 2012. Trichoderma asperellum: a potential biocontrol agent for Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon. Crop Protection 36:18−22 doi: 10.1016/j.cropro.2012.02.004 |
[26] |
Crews TE, Carton W, Olsson L. 2018. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Global Sustainability 1:e11 doi: 10.1017/sus.2018.11 |
[27] |
Zhu B, Gao T, Zhang D, Ding K, Li C, et al. 2022. Functions of arbuscular mycorrhizal fungi in horticultural crops. Scientia Horticulturae 303:111219 doi: 10.1016/j.scienta.2022.111219 |
[28] |
Zhang C, Zhang Q, Luo M, Wang Q, Wu X. 2023. Bacillus cereus WL08 immobilized on tobacco stem charcoal eliminates butylated hydroxytoluene in soils and alleviates the continuous crop obstacle of Pinellia ternata. Journal of Hazardous Materials 450:131091 doi: 10.1016/j.jhazmat.2023.131091 |
[29] |
Liu F, Zhu Q, Yang H, Zhou J, Dai C, et al. 2019. An integrated prevention strategy to address problems associated with continuous cropping of watermelon caused by Fusarium oxysporum. European Journal of Plant Pathology 155:293−305 doi: 10.1007/s10658-019-01771-6 |
[30] |
Jiang W, Chen R, Zhao L, Duan Y, Wang H, et al. 2023. Isolation of phloridzin-degrading, IAA-producing bacterium Ochrobactrum haematophilum and its effects on the apple replant soil environment. Horticultural Plant Journal 9(2):199−208 doi: 10.1016/j.hpj.2022.08.010 |
[31] |
Liu R, Zhou Z, Guo W, Chen B, Oosterhuis DM. Oosterhuis DM. 2008. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants. Agricultural Water Management 95(11):1261−70 doi: 10.1016/j.agwat.2008.05.002 |
[32] |
Bao S. 2000. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press. |
[33] |
Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P. 2012. Meeting the demand for crop production: the challenge of yield declinein crops grown in short rotations. Biological Reviews 87(1):52−71 |
[34] |
Wang X, Yao Y, Wang G, Lu H, Ma J, et al. 2022. Controlled-release diammonium phosphate alleviates apple replant disease: an integrated analysis of soil properties, plant growth, and the soil microbiome. Journal of Agricultural and Food Chemistry 70(29):8942−54 doi: 10.1021/acs.jafc.2c01630 |
[35] |
Hamid B, Zaman M, Farooq S, Fatima S, Sayyed RZ, et al. 2021. Bacterial plant biostimulants: a sustainable way towards improving growth, productivity, and health of crops. Sustainability 13(5):2856 doi: 10.3390/su13052856 |
[36] |
Zhao Q, Xiong W, Xing Y, Sun Y, Lin X, et al. 2018. Long-term coffee monoculture alters soil chemical properties and microbial communities. Scientific Reports 8(1):6116 doi: 10.1038/s41598-018-24537-2 |
[37] |
Liu X, Liu J, Xing B, Herbert SJ, Meng K, et al. 2005. Effects of long-term continuous cropping, tillage, and fertilization on soil organic carbon and nitrogen of black soils in China. Communications in Soil Science and Plant Analysis 36:1229−39 doi: 10.1081/CSS-200056917 |
[38] |
DeLaune PB, Mubvumba P, Lewis KL, Keeling JW. 2019. Rye cover crop impacts soil properties in a long-term cotton system. Soil Science Society of America Journal 83(5):1451−58 doi: 10.2136/sssaj2019.03.0069 |
[39] |
Sokol NW, Slessarev E, Marschmann GL, Nicolas A, Blazewicz SJ, et al. 2022. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nature Reviews Microbiology 20(7):415−30 doi: 10.1038/s41579-022-00695-z |
[40] |
Sudini H, Liles MR, Arias CR, Bowen KL, Huettel RN. 2011. Exploring soil bacterial communities in different peanut-crop sequences using multiple molecular approaches. Phytopathology 101(7):819−27 doi: 10.1094/PHYTO-11-10-0310 |
[41] |
Xu L, Ravnskov S, Larsen J, Nilsson RH, Nicolaisen M. 2012. Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biology and Biochemistry 46:26−32 doi: 10.1016/j.soilbio.2011.11.010 |
[42] |
Sui J, Yang J, Li C, Zhang L, Hua X. 2023. Effects of a microbial restoration substrate on plant growth and rhizosphere microbial community in a continuous cropping poplar. Microorganisms 11(2):486 doi: 10.3390/microorganisms11020486 |
[43] |
Li J, Chen X, Li S, Zuo Z, Zhan R, et al. 2020. Variations of rhizospheric soil microbial communities in response to continuous Andrographis paniculata cropping practices. Botanical Studies 61(1):18 doi: 10.1186/s40529-020-00295-1 |
[44] |
Degens BP, Schipper LA, Sparling GP, Duncan LC. 2001. Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biology and Biochemistry 33(9):1143−53 doi: 10.1016/S0038-0717(01)00018-9 |
[45] |
Tan Y, Cui Y, Li H, Kuang A, Li X, et al. 2017. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiological Research 194:10−19 doi: 10.1016/j.micres.2016.09.009 |
[46] |
Zeng ZQ, Zhuang WY. 2023. New species of Neocosmospora (Ascomycota) from China as evidenced by morphological and molecular data. Life 13:1515 doi: 10.3390/life13071515 |
[47] |
Li F, Chen L, Redmile-Gordon M, Zhang J, Zhang C, et al. 2018. Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil. Land Degradation & Development 29(6):1642−51 doi: 10.1002/ldr.2965 |
[48] |
Farhat H, Urooj F, Irfan M, Sohail N, Majeed S, et al. 2023. Biological control potential of endophytic fungi with amelioration of systemic resistance in sunflower and GC–MS metabolic profiling of Talaromyces assiutensis. Current Microbiology 80:61 doi: 10.1007/s00284-022-03161-4 |
[49] |
Wang H, Wu C, Zhang H, Xiao M, Ge T, et al. 2022. Characterization of the belowground microbial community and co-occurrence networks of tobacco plants infected with bacterial wilt disease. World Journal of Microbiology and Biotechnology 38:155 doi: 10.1007/s11274-022-03347-9 |
[50] |
Pang Z, Dong F, Liu Q, Lin W, Hu C, et al. 2021. Soil metagenomics reveals effects of continuous sugarcane crop on the structure and functional pathway of rhizospheric microbial community. Frontiers in Microbiology 12:627569 doi: 10.3389/fmicb.2021.627569 |
[51] |
Wei Z, Yu D. 2018. Analysis of the succession of structure of the bacteria community in soil from long-term continuous cotton cropping in Xinjiang using high-throughput sequencing. Archives of Microbiology 200:653−62 doi: 10.1007/s00203-018-1476-4 |
[52] |
Chen M, Li X, Yang Q, Chi X, Pan L, et al. 2014. Dynamic succession of soil bacterial community during continuous rropping of peanut (Arachis hypogaea L.). PLoS One 9(7):e101355 doi: 10.1371/journal.pone.0101355 |
[53] |
Xiong W, Zhao Q, Zhao J, Xun W, Li R, et al. 2015. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microbial Ecology 70:209−18 doi: 10.1007/s00248-014-0516-0 |