[1] |
van Tieghem P. 1878. Troisième mémoire sur les Mucorinées. Annales des Sciences Naturelles Botanique 4:313−99 |
[2] |
von Arx JA. 1982. On Mucoraceae s. str. and other families of the Mucorales. Sydowia 35:10−26 |
[3] |
Voigt K, Cigelnik E, O'donnell K. 1999. Phylogeny and PCR identification of clinically important Zygomycetes based on nuclear ribosomal-DNA sequence data. Journal of Clinical Microbiology 37:3957−64 doi: 10.1128/JCM.37.12.3957-3964.1999 |
[4] |
Voigt K, Wöstemeyer J. 2001. Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1α genes. Gene 270:113−20 doi: 10.1016/S0378-1119(01)00464-4 |
[5] |
O'donnell K, Lutzoni FM, Ward TJ, Benny GL. 2001. Evolutionary relationships among mucoralean fungi (Zygomycota): Evidence for family polyphyly on a large scale. Mycologia 93:286−297 doi: 10.1080/00275514.2001.12063160 |
[6] |
Cannon PF, Kirk PM. 2007. Fungal Families of the World. Wallingford, UK: CABI. doi: 10.1079/9780851998275.0000 |
[7] |
Kirk PM, Cannon PF, Minter DW, Stalpers JA. 2008. Dictionary of the Fungi. 10th Edition. Wallingford, UK: CABI. doi: 10.1079/9780851998268.0000 |
[8] |
Voigt K. 2012. Chytridiomycota. In: Syllabus of plant families–A. Engler's Syllabus der Pflanzenfamilien. Part 1/1: Bluegreen algae, Myxomycetes and Myxomycete-like organisms, Phytoparasitic protists, Heterotrophic Heterokontobionta and Fungi, ed. Frey W. Stuttgart: Borntraeger Verlag. pp. 106–29 |
[9] |
Hoffmann K. 2010. Identification of the genus Absidia (Mucorales, Zygomycetes): a comprehensive taxonomic revision. In Molecular identification of fungi, eds. Gherbawy Y, Voigt K. 1st Edition. Berlin: Springer. pp 439–60. doi: 10.1007/978-3-642-05042-8_19 |
[10] |
Voigt K, Hoffmann K, Einax E, Eckart M, Papp T, et al. 2009. Revision of the family structure of the Mucorales (Mucoromycotina, Zygomycetes) based on multigene genealogies: phylogenetic analyses suggest a bigeneric Phycomycetaceae with Spinellus as sister group to Phycomyces. In Current advances in molecular mycology, eds. Gherbawy Y, Mach RL, Rai M. New York, USA: Nova Science Publishers, Inc. pp. 313–32 |
[11] |
Berlese AN, De Toni JB. 1888. Phycomyceteae. In In Sylloge Fungorum series 7, ed. Saccardo PA. pp. 181−322 |
[12] |
Beauverie J. 1900. Mycocladus verticillatus (gen. nov. sp. nov.). Annales de l'Université de Lyon 3:162−80 |
[13] |
Vuillemin P. 1903. Importance taxonomique de l'appareil zygosporé des Mucorinées. Bulletin de la Société Mycologique de France 19:106−18 |
[14] |
Bainier M. 1903. Sur quelques espèces de Mucorinées nouvelles ou peu connues. Bulletin de la Société Mycologique de France 19(2):153−72 |
[15] |
Naumov NA. 1935. Opredelitel Mukorovykh (Mucorales). Akademia Nauk SSSR. 136 pp. |
[16] |
Ribaldi MS. 1952. Sopra un interessante Zigomicete terricolo: Gongronella urceolifera n. gen. et n. sp. Rivista di Biologia 49(1):157−66 |
[17] |
Hesseltine CW, Ellis JJ. 1964. The genus Absidia: Gongronella and cylindrical-spored species of Absidia. Mycologia 56:568−601 doi: 10.1080/00275514.1964.12018145 |
[18] |
Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, et al. 2022. Outline of Fungi and fungus-like taxa – 2021. Mycosphere 13:53−453 doi: 10.5943/mycosphere/13/1/2 |
[19] |
Hoffmann K, Discher S, Voigt K. 2007. Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological, phylogenetic, and morphological characters; thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam. nov. Mycological Research 111:1169−83 doi: 10.1016/j.mycres.2007.07.002 |
[20] |
Hoffmann K, Voigt K. 2009. Absidia parricida plays a dominant role in biotrophic fusion parasitism among mucoralean fungi (Zygomycetes): Lentamyces, a new genus for A. parricida and A. zychae. Plant Biology 11:537−54 doi: 10.1111/j.1438-8677.2008.00145.x |
[21] |
Hoffmann K, Telle S, Walther G, Eckart M, Kirchmair M, et al. 2009. Diversity, genotypic identification, ultrastructural and phylogenetic characterization of zygomycetes from different ecological habitats and climatic regions: limitations and utility of nuclear ribosomal DNA barcode markers. In Current Advances in Molecular Mycology, eds. Gherbawy Y, Mach R, Rai M. New York, USA: Nova Science Publishers. pp 263–312. |
[22] |
Leitão JDA, Cordeiro TRL, Nguyen TTT, Lee HB, Gurgel LMS, et al. 2021. Absidia aguabelensis sp. nov.: a new mucoralean fungi isolated from a semiarid region in Brazil. Phytotaxa 516:83−91 doi: 10.11646/phytotaxa.516.1.6 |
[23] |
Lima CLF, Lima DX, Cordeiro TRL, Lee HB, Nguyen TTT, et al. 2021. Absidia bonitoensis (Mucorales, Mucoromycota), a new species isolated from the soil of an upland Atlantic forest in Northeastern Brazil. Nova Hedwigia 112:241−251 doi: 10.1127/nova_hedwigia/2021/0614 |
[24] |
Zhao H, Nie Y, Zong TK, Wang YJ, Wang M, et al. 2022. Species Diversity and ecological habitat of Absidia (Cunninghamellaceae, Mucorales) with emphasis on five new species from forest and grassland soil in China. Journal of Fungi 8:471 doi: 10.3390/jof8050471 |
[25] |
Zhao H, Nie Y, Zong TK, Wang K, Lv ML, et al. 2023. Species diversity, updated classification and divergence times of the phylum Mucoromycota. Fungal Diversity 123:49−157 doi: 10.1007/s13225-023-00525-4 |
[26] |
Hurdeal VG, Jones EBG, Gentekaki E. 2023. Absidia zygospora (Mucoromycetes), a new species from Nan Province, Thailand. Studies in Fungi 8:15 doi: 10.48130/sif-2023-0015 |
[27] |
Farr DF, Rossman AY. 2024. Fungal Databases. U.S. National Fungus Collections, ARS, USDA. https://fungi.ars.usda.gov/ (Accessed 17 October 2024 |
[28] |
Benny GL, Humber RA, Morton JB. 2001. Zygomycota: Zygomycetes. In Systematics and evolution. The Mycota (a comprehensive treatise on fungi as experimental systems for basic and applied research), eds. McLaughlin DJ, McLaughlin EG, Lemke PA. Berlin/Heidelberg, Germany: Springer. Volume 7A. pp. 113–46. doi: 10.1007/978-3-662-10376-0_6 |
[29] |
Zong TK, Zhao H, Liu XL, Ren LY, Zhao CL, et al. 2021a. Taxonomy and phylogeny of the Absidia (Cunninghamellaceae, Mucorales): Introducing nine new species and two new combinations from China; Research Square: Durham, NC, USA. doi: 10.21203/rs.3.rs-820672/v1 |
[30] |
Zong TK, Zhao H, Liu XL, Ren LY, Zhao CL, et al. 2021b. Taxonomy and phylogeny of four new species in Absidia (Cunninghamellaceae, Mucorales) from China. Frontiers in Microbiology 12:2181 doi: 10.3389/fmicb.2021.677836 |
[31] |
Zhao H, Zhu J, Zong TK, Liu XL, Ren LY, et al. 2021. Two new species in the family Cunninghamellaceae from China. Mycobiology 49:142−50 doi: 10.1080/12298093.2021.1904555 |
[32] |
Chen G, Ge H, Li J, Li J, Zhai X, et al. 2016. Microbial transformation of 20(R)-panaxadiol by Absidia corymbifera AS 3.3387. Journal of Molecular Catalysis B: Enzymatic 123:154−59 doi: 10.1016/j.molcatb.2015.11.015 |
[33] |
Sordon S, Popłoński J, Tronina T, Huszcza E. 2019. Regioselective O-glycosylation of flavonoids by fungi Beauveria bassiana, Absidia coerulea and Absidia glauca. Bioorganic Chemistry 93:102750 doi: 10.1016/j.bioorg.2019.01.046 |
[34] |
Cordeiro TRL, Nguyen TTT, Lima DX, da Silva SBG, de Lima CF, et al. 2020. Two new species of the industrially relevant genus Absidia (Mucorales) from soil of the Brazilian Atlantic Forest. Acta Botanica Brasilica 34:549−58 doi: 10.1590/0102-33062020abb0040 |
[35] |
Park J, Han F, Lee IS. 2022. Biotransformation of (−)-α-Bisabolol by Absidia coerulea. Molecules 27:881 doi: 10.3390/molecules27030881 |
[36] |
Song M, Fu R, Cai S, Jiang X, Wang F, et al. 2023. 7α and 7β hydroxylation of dehydroepiandrosterone by Gibberella sp. and Absidia coerulea biotransformation. Catalysts 13:272 doi: 10.3390/catal13020272 |
[37] |
Chen G, Yang M, Lu Z, Zhang J, Huang H, et al. 2007. Microbial transformation of 20(S)-protopanaxatriol-type saponins by Absidia coerulea. Journal of Natural Products 70:1203−6 doi: 10.1021/np070053v |
[38] |
Albert Q, Leleyter L, Lemoine M, Heutte N, Rioult JP, et al. 2018. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere 196:386−92 doi: 10.1016/j.chemosphere.2017.12.156 |
[39] |
Guiraud P, Bonnet JL, Boumendjel A, Kadri-Dakir M, Dusser M, et al. 2008. Involvement of Tetrahymena pyriformis and selected fungi in the elimination of anthracene, and toxicity assessment of the biotransformation products. Ecotoxicology and Environmental Safety 69:296−305 doi: 10.1016/j.ecoenv.2006.11.006 |
[40] |
Kristanti RA, Fikri Ahmad Zubir, Hadibarata T. 2016. Biotransformation studies of cresol red by Absidia spinosa M15. Journal of Environmental Management 172:107−11 doi: 10.1016/j.jenvman.2015.11.017 |
[41] |
Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, et al. 2020. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11:2678−54 doi: 10.5943/mycosphere/11/1/20 |
[42] |
Mattoo AJ, Nonzom S. 2022. Investigating diverse methods for inducing sporulation in endophytic fungi. Studies in Fungi 7:16 |
[43] |
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ. Volume 18. San Diego, CA, USA: Academic Press. pp. 315–22. doi: 10.1016/b978-0-12-372180-8.50042-1 |
[44] |
Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172:4238−46 doi: 10.1128/jb.172.8.4238-4246.1990 |
[45] |
Xu S, Phookamsak R, Jiang HB, Tibpromma S, Yang JB, et al. 2022. First report of Occultibambusa jonesii on para grass (Brachiaria mutica) in Yunnan, China. Chiang Mai Journal of Science 49:581−97 doi: 10.12982/CMJS.2022.048 |
[46] |
Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20:1160−66 doi: 10.1093/bib/bbx108 |
[47] |
Hall T. 2004. Bioedit Version 6.0.7. www.mbio.ncsu.edu/bioedit/bioedit.html |
[48] |
Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the cipres science gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010. New York, USA: IEEE. pp. 1–8. doi: 10.1109/GCE.2010.5676129 |
[49] |
Nylander JAA. 2008. MrModeltest2 v. 2.3 (Program for Selecting DNA Substitution Models Using PAUP*). Uppsala, Sweden: Evolutionary Biology Centre. https://github.com/nylander/MrModeltest2 |
[50] |
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572−74 doi: 10.1093/bioinformatics/btg180 |
[51] |
Rannala B, Yang Z. 1996. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution 43:304−11 doi: 10.1007/BF02338839 |
[52] |
Zhaxybayeva O, Gogarten JP. 2002. Bootstrap, Bayesian probability and maximum likelihood mapping: Exploring new tools for comparative genome analyses. BMC Genomics 3:4 doi: 10.1186/1471-2164-3-4 |
[53] |
Rambaut A. 2012. FigTree Version 1.4. 0. Edinburgh: Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/ (Accessed January 10, 2024 |
[54] |
Hurdeal VG, Gentekaki E, Lee HB, Jeewon R, Hyde KD, et al. 2021. Mucoralean fungi in Thailand: novel species of Absidia from tropical forest soil. Cryptogamie Mycologie 42:39−61 doi: 10.5252/cryptogamie-mycologie2021v42a4 |
[55] |
Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, et al. 2022. Biological control of plant pathogens: A global perspective. Microorganisms 10:596 doi: 10.3390/microorganisms10030596 |
[56] |
Muhammad M, Basit A, Ali K, Li WJ, Li L, et al. 2024. Endophytic fungi as potential bio-control agents of soil-borne pathogen. Journal of Crop Health 76:617−36 doi: 10.1007/s10343-024-00975-z |
[57] |
Index Fungorum. 2024. www.indexfungorum.org/Names/Names.asp |
[58] |
Nguyen TTT, Lee SH, Bae S, Jeon SJ, Mun HY, et al. 2016. Characterization of two new records of zygomycete species belonging to undiscovered taxa in Korea. Mycobiology 44:29−37 doi: 10.5941/MYCO.2016.44.1.29 |
[59] |
Species Fungorum. 2024. www.speciesfungorum.org/Names/Names.asp |
[60] |
MycoBank. 2024. www.mycobank.org/quicksearch.aspx |