[1]

Teng X, Zhuang W, Liu FP, Chang TH, Chiu YH. 2023. China's path of carbon neutralization to develop green energy and improve energy efficiency. Renewable Energy 206:397−408

doi: 10.1016/j.renene.2023.01.104
[2]

Hassan Q, Sameen AZ, Salman HM, Jaszczur M, Al-Jiboory AK. 2023. Hydrogen energy future: Advancements in storage technologies and implications for sustainability. Journal of Energy Storage 72:108404

doi: 10.1016/j.est.2023.108404
[3]

Le TT, Sharma P, Bora BJ, Tran VD, Truong TH, et al. 2024. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. International Journal of Hydrogen Energy 54:791−816

doi: 10.1016/j.ijhydene.2023.08.044
[4]

Dermühl S, Riedel U. 2023. A comparison of the most promising low-carbon hydrogen production technologies. Fuel 340:127478

doi: 10.1016/j.fuel.2023.127478
[5]

El-Shafie M. 2023. Hydrogen production by water electrolysis technologies: A review. Results in Engineering 20:101426

doi: 10.1016/j.rineng.2023.101426
[6]

Zhang L, Jia C, Bai F, Wang W, An S, et al. 2024. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel 355:129455

doi: 10.1016/j.fuel.2023.129455
[7]

Halter F, Chauveau C, Djebaïli-Chaumeix N, Gökalp I. 2005. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures. Proceedings of the Combustion Institute 30:201−08

doi: 10.1016/j.proci.2004.08.195
[8]

Ilbas M, Crayford AP, Yılmaz İ, Bowen PJ, Syred N. 2006. Laminar-burning velocities of hydrogen–air and hydrogen–methane–air mixtures: An experimental study. International Journal of Hydrogen Energy 31:1768−79

doi: 10.1016/j.ijhydene.2005.12.007
[9]

Petersen EL, Hall JM, Smith SD, de Vries J, Amadio AR, et al. 2007. Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures. Journal of Engineering for Gas Turbines and Power 129:937−44

doi: 10.1115/1.2720543
[10]

Herzler J, Naumann C. 2009. Shock-tube study of the ignition of methane/ethane/hydrogen mixtures with hydrogen contents from 0% to 100% at different pressures. Proceedings of the Combustion Institute 32:213−20

doi: 10.1016/j.proci.2008.07.034
[11]

Petersen EL, Kalitan DM, Simmons S, Bourque G, Curran HJ, et al. 2007. Methane/propane oxidation at high pressures: Experimental and detailed chemical kinetic modeling. Proceedings of the Combustion Institute 31:447−54

doi: 10.1016/j.proci.2006.08.034
[12]

Zhang Y, Huang Z, Wei L, Zhang J, Law CK. 2012. Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures. Combustion and Flame 159:918−31

doi: 10.1016/j.combustflame.2011.09.010
[13]

Zhang Y, Jiang X, Wei L, Zhang J, Tang C, et al. 2012. Experimental and modeling study on auto-ignition characteristics of methane/hydrogen blends under engine relevant pressure. International Journal of Hydrogen Energy 37:19168−76

doi: 10.1016/j.ijhydene.2012.09.056
[14]

Wang H, You XQ, Joshi AV, Davis SG, Laskin A, et al. 2007. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. http://ignis.usc.edu/USC_Mech_II.htm

[15]

Donohoe N, Heufer A, Metcalfe WK, Curran HJ, Davis ML, et al. 2014. Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures. Combustion and Flame 161:1432−43

doi: 10.1016/j.combustflame.2013.12.005
[16]

Panigrahy S, Mohamed AAES, Wang P, Bourque G, Curran HJ. 2023. When hydrogen is slower than methane to ignite. Proceedings of the Combustion Institute 39:253−63

doi: 10.1016/j.proci.2022.08.025
[17]

Karimi M, Ochs B, Sun W, Ranjan D. 2021. High pressure ignition delay times of H2/CO mixture in carbon dioxide and argon diluent. Proceedings of the Combustion Institute 38:251−60

doi: 10.1016/j.proci.2020.06.268
[18]

Shao J, Choudhary R, Davidson DF, Hanson RK, Barak S, Vasu S. 2019. Ignition delay times of methane and hydrogen highly diluted in carbon dioxide at high pressures up to 300 atm. Proceedings of the Combustion Institute 37:4555−62

doi: 10.1016/j.proci.2018.08.002
[19]

Harman-Thomas JM, Kashif TA, Hughes KJ, Pourkashanian M, Farooq A. 2023. Experimental and modelling study of hydrogen ignition in CO2 bath gas. Fuel 334:126664

doi: 10.1016/j.fuel.2022.126664
[20]

Zhang X, Lailliau M, Cao C, Li Y, Dagaut P, et al. 2019. Pyrolysis of butane-2,3-dione from low to high pressures: implications for methyl-related growth chemistry. Combustion and Flame 200:69−81

doi: 10.1016/j.combustflame.2018.11.003
[21]

Zhang X, Wang G, Zou J, Li Y, Li W, et al. 2017. Investigation on the oxidation chemistry of methanol in laminar premixed flames. Combustion and Flame 180:20−31

doi: 10.1016/j.combustflame.2017.02.016
[22]

Hashemi H, Christensen JM, Gersen S, Glarborg P. 2015. Hydrogen oxidation at high pressure and intermediate temperatures: Experiments and kinetic modeling. Proceedings of the Combustion Institute 35:553−60

doi: 10.1016/j.proci.2014.05.101
[23]

Yu CL, Frenklach M, Masten DA, Hanson RK, Bowman CT. 1994. Reexamination of shock-tube measurements of the rate coefficient of H + O2 → OH + O. The Journal of Physical Chemistry 98:4770−71

doi: 10.1021/j100068a048
[24]

Jin H, Frassoldati A, Wang Y, Zhang X, Zeng M, et al. 2015. Kinetic modeling study of benzene and PAH formation in laminar methane flames. Combustion and Flame 162:1692−711

doi: 10.1016/j.combustflame.2014.11.031
[25]

Wang S, Davidson DF, Hanson RK. 2016. Improved shock tube measurement of the CH4 + Ar = CH3 + H + Ar rate constant using UV cavity-enhanced absorption spectroscopy of CH3. The Journal of Physical Chemistry A 120:5427−34

doi: 10.1021/acs.jpca.6b02572
[26]

Srinivasan NK, Su MC, Sutherland JW, Michael JV. 2005. Reflected Shock Tube Studies of High-Temperature Rate Constants for CH3 + O2, H2CO + O2, and OH + O2. The Journal of Physical Chemistry A 109:7902−14

doi: 10.1021/jp0581330
[27]

Sutherland JW, Su MC, Michael JV. 2001. Rate constants for H + CH4, CH3 + H2, and CH4 dissociation at high temperature. International Journal of Chemical Kinetics 33:669−84

doi: 10.1002/kin.1064
[28]

Smith GP, Golden DM, Frenklach M. n.d. GRI-Mech 3.0. www.me.berkeley.edu/gri_mech/version30/text30.html

[29]

Baulch DL, Bowman CT, Cobos CJ, Cox RA, Just T, et al. 2005. Evaluated Kinetic Data for Combustion Modeling: Supplement II. Journal of Physical and Chemical Reference Data 34:757−1397

doi: 10.1063/1.1748524
[30]

Labbe NJ, Sivaramakrishnan R, Goldsmith CF, Georgievskii Y, Miller JA, et al. 2016. Weakly bound free radicals in combustion: "Prompt" dissociation of formyl radicals and its effect on laminar flame speeds. The Journal of Physical Chemistry Letters 7:85−89

doi: 10.1021/acs.jpclett.5b02418
[31]

CHEMKIN-PRO 15092. 2009. Reaction Design. San Diego, USA.www.reactiondesign.com/products/chemkin (Retrieved 2015, 4