[1]

Biswas R. 2019. Adulteration in milk: a growing concern. Journal of Dairy & Veterinary Sciences 99(1):555751

doi: 10.19080/jdvs.2019.09.555751
[2]

Biswas R, Karmakar PK. 2019. A facile technique of sensing adulteration in emulsion: a road to safety. Ergonomics International Journal 3(5):000218

doi: 10.23880/eoij-16000218
[3]

Gossner CME, Schlundt J, Ben Embarek P, Hird S, Lo-Fo-Wong D, et al. 2009. The melamine incident: implications for international food and feed safety. Environmental Health Perspectives 117:1803−08

doi: 10.1289/ehp.0900949
[4]

Pei X, Tandon A, Alldrick A, Giorgi L, Huang W, et al. 2011. The China melamine milk scandal and its implications for food safety regulation. Food Policy 36:412−20

doi: 10.1016/j.foodpol.2011.03.008
[5]

The Food and Agriculture Organization (FAO). 2024. The State of Food Security and Nutrition in the World 2024. www.fao.org/publications/home/fao-flagship-publications/the-state-of-food-security-and-nutrition-in-the-world/2021/en (Accessed on 04/11/2024)

[6]

The Economic Times. 2018. 68% milk & milk products in India not as per FSSAI standard: Official. https://economictimes.indiatimes.com/industry/cons-products/food/68-milk-milk-products-in-india-not-as-per-fssai-standardofficial/articleshow/65689621.cms (Accessed on 04/11/2024)

[7]

Livemint. 2015. Over 68% milk samples fail quality test, says govt. www.livemint.com/Politics/lVQXLJpzQo0SPGfE4H84XK/Over-68-milk-samples-fail-quality-test-says-govt.html (Accessed on 04/11/2024)

[8]

Agarwal S, Raparia R, Kumar V, Srivastava R, Prajapati YK. 2024. Analytical study of SPR sensor with black phosphorus and tungsten diselenide heterostructure for milk adulteration detection. Plasmonics 00:1−10

doi: 10.1007/s11468-024-02496-x
[9]

Ge Y, Huang X, Tang X, Wang Y, Chen F, et al. 2024. Application and development of optical-based viscosity measurement technology. Optics and Lasers in Engineering 181:108413

doi: 10.1016/j.optlaseng.2024.108413
[10]

Zarkasi M, Wulandari DAR, Bukhori S, Auliya YA, Dharmawan T. 2024. Analysis and design of adulteration dairy milk system. Proceedings of the 2nd International Conference on Neural Networks and Machine Learning 2023 (ICNNML 2023), Indonesia, 2023. Dordrecht, The Netherlands: Atlantis Press. pp. 190−95. doi: 10.2991/978-94-6463-445-7_20

[11]

Harini VK, Meher SR, Alex ZC. 2024. A novel refractive index based-fiber optic sensor for milk adulteration detection. Optical Materials 154:115810

doi: 10.1016/j.optmat.2024.115810
[12]

Wang WS, Kari N, Liu JD, Zhu AS, Wang Q. 2024. U-shaped optical fiber SPR sensor based on GeS sensitizing film layer. Optics Communications 570:130877

doi: 10.1016/j.optcom.2024.130877
[13]

Supian LS, Mohd Sahroni NH, Chew SP, Naim NF, Ramza H. 2023. Investigation of U-shaped plastic optical fiber as refractive index sensor for liquids assessment. Proceedings SPIE Future Sensing Technologies 2023, Yokohama, Japan, 2023. 12327W. doi: 10.1117/12.2666890

[14]

Jyoti, Kavita, Verma RK. 2022. Selective detection of urea as milk adulterant using LMR based fiber optic probe. Journal of Food Composition and Analysis 114:104825

doi: 10.1016/j.jfca.2022.104825
[15]

Raghuwanshi SK, Kumar S, Kumar R. 2024. U-shape fiber optic-based SPR sensor. In Geometric Feature-Based Fiber Optic Surface Plasmon Resonance Sensors. Singapore: Springer. pp. 71–105. doi: 10.1007/978-981-99-7297-5_3

[16]

Fuentes-Rubio YA, Zúñiga-Ávalos YA, Guzmán-Sepúlveda JR, Domínguez-Cruz RF. 2022. Refractometric detection of adulterated milk based on multimode interference effects. Foods 11:1075

doi: 10.3390/foods11081075
[17]

Veríssimo MIS, Gamelas JAF, Fernandes AJS, Evtuguin DV, Gomes MTSR. 2020. A new formaldehyde optical sensor: detecting milk adulteration. Food Chemistry 318:126461

doi: 10.1016/j.foodchem.2020.126461
[18]

Lang X, Liu X, Zhang W, Singh R, Li G, et al. 2023. Homemade low-cost fabrication technique and stability analysis of a U-shaped fiber sensor structure. Applied Optics 62:4753−58

doi: 10.1364/AO.491370
[19]

Gowri A, Rajamani AS, Ramakrishna B, Sai VVR. 2019. U-bent plastic optical fiber probes as refractive index based fat sensor for milk quality monitoring. Optical Fiber Technology 47:15−20

doi: 10.1016/j.yofte.2018.11.019
[20]

Choudhary S, Joshi A. 2022. Development of an embedded system for real-time milk spoilage monitoring and adulteration detection. International Dairy Journal 127:105207

doi: 10.1016/j.idairyj.2021.105207
[21]

Podder E, Hossain MB, Ahmed K. 2022. Photonic crystal fiber for milk sensing. Sensing and Bio-Sensing Research 38:100534

doi: 10.1016/j.sbsr.2022.100534
[22]

Das U, Hoque R, Biswas R. 2023. Biosynthesised silver nanoparticles as an efficient colorimetric sensor towards detection of melamine. Applied Physics A 129(5):328

doi: 10.1007/s00339-023-06613-1
[23]

Das U, Daimari NK, Biswas R, Mazumder N. 2024. Elucidating impact of solvent and pH in synthesizing silver nanoparticles via green and chemical route. Discover Applied Sciences 6(6):320

doi: 10.1007/s42452-024-06010-0
[24]

Das U, Biswas R, Mazumder N. 2024. One-pot interference-based colorimetric detection of melamine in raw milk via green tea-modified silver nanostructures. ACS Omega 9(20):21879−90

doi: 10.1021/acsomega.3c09516
[25]

Das U, Saikia S, Biswas R. 2024. Highly sensitive biofunctionalized nanostructures for paper-based colorimetric sensing of hydrogen peroxide in raw milk. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 316:124290

doi: 10.1016/j.saa.2024.124290