[1] |
Schaefer H, Heibl C, Renner SS. 2009. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proceedings of the Royal Society B: Biological Sciences 276(1658):843−851 doi: 10.1098/rspb.2008.1447 |
[2] |
Wu X, Wu X, Wang Y, Wang B, Lu Z, et al. 2019. Molecular genetic mapping of two complementary genes underpinning fruit bitterness in the bottle gourd (Lagenaria siceraria [Mol.] Standl.). Frontiers in Plant Science 10:1493 doi: 10.3389/fpls.2019.01493 |
[3] |
Yang SJ, Choi JM, Park SE, Rhee EJ, Lee WY, et al. 2015. Preventive effects of bitter melon (Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NF-κB and JNK pathways in high-fat-fed OLETF rats. The Journal of Nutritional Biochemistry 26(3):234−40 doi: 10.1016/j.jnutbio.2014.10.010 |
[4] |
Raina K, Kumar D, Agarwal R. 2016. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy. Seminars in Cancer Biology 40:116−29 doi: 10.1016/j.semcancer.2016.07.002 |
[5] |
Wang J. 2009. Study on extraction, purification, structure, and antioxidant properties of evodia alkaloids. Thesis. Huazhong Agricultural University, China |
[6] |
Meng Y, Fan Z, Zhai C, Li M, Wang L. 2012. Study on the enrichment of bitter compounds, flavonoids, and polysaccharides in orange peel. Heilongjiang Science and Technology Information 2012:34 |
[7] |
Ma Y. 2017. Biosynthesis, regulation, and transport mechanism of cucurbitacins in cucumber. Thesis. Chinese Academy of Agricultural Sciences, China |
[8] |
Zhang S, Miao H, Cheng Z, Liu M, Zhang Z, et al. 2011. Genetic mapping of the fruit bitterness gene Bt in cucumber (Cucumis sativus L.). Acta Horticulturae Sinica 38(04):709−16 |
[9] |
Li M, Gong Y Q, Miao H, Chen W, Sun C, et al. 2010. Mapping of the Bi gene for bitterness in cucumber vegetative parts. Acta Horticulturae Sinica 37(07):1073−78 |
[10] |
Zhang S, Miao H, Sun R, Wang X, Huang S, et al. 2013. Localization of a new gene for bitterness in cucumber. Journal of Heredity 104(1):134−39 doi: 10.1093/jhered/ess075 |
[11] |
Enslin PR, Hugo JM, Norton KB, Rivett DEA. 1960. Bitter principles of the cucurbitaceae. Part IX. Cucurbitacin A. Journal of the Chemical Society 4779−87 doi: 10.1039/JR9600004779 |
[12] |
Thimmappa R, Geisler K, Louveau T, O'Maille P, Osbourn A. 2014. Triterpene biosynthesis in plants. Annual Review of Plant Biology 65(1):225−57 doi: 10.1146/annurev-arplant-050312-120229 |
[13] |
Piao X, Gao F, Zhu J, Wang L, Zhao X, et al. 2018. Cucurbitacin B inhibits tumor angiogenesis by triggering the mitochondrial signaling pathway in endothelial cells. International Journal of Molecular Medicine 42(2):1018−25 doi: 10.3892/ijmm.2018.3647 |
[14] |
Luan F, Cao H, Gao P, Liu S, Liu S, et al. 2023. Changes of watermelon cucurbitin E and its related gene correlation analysis. Journal of Northeast Agricultural University 4:25−37,54 |
[15] |
Li Q, Luo F, Wang C, Luo L, Zhang W. 2020. Research progress on cucurbitacins, the bitter compounds in cucurbit crops. Journal of Plant Physiology 56(06):1137−45 |
[16] |
Rice CA, Rymal KS, Chambliss OL, Johnson FA. 1981. Chromatographic and mass spectral analysis of cucurbitacins of three Cucumis sativus cultivars. Journal of Agricultural and Food Chemistry 29(1):194−96 doi: 10.1021/jf00103a051 |
[17] |
Andeweg JM, De Bruyn JW. 1959. Breeding of non-bitter cucumbers. Euphytica 8(1):13−20 doi: 10.1007/BF00022084 |
[18] |
Wu J, Zhao H. 2010. Determination of cucurbitacin B content in melon stems by high-performance liquid chromatography. Chemistry and Bioengineering 27(01):92−94 |
[19] |
Zhou Y, Ma Y, Zeng J, Duan L, Xue X, et al. 2016. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nature Plants 2(12):16183 doi: 10.1038/nplants.2016.183 |
[20] |
Lavie D, Willner D, Merenlender Z. 1964. Constituents of Citrullus colocynthis (L.) Schrad. Phytochemistry 3(1):51−56 doi: 10.1016/S0031-9422(00)83994-1 |
[21] |
Gamlath CB, Gunatilaka AAL, Alvi KA, Atta-ur-Rahman, Balasubramaniam S. 1988. Cucurbitacins of Colocynthis vulgaris. Phytochemistry 27(10):3225−29 doi: 10.1016/0031-9422(88)80031-1 |
[22] |
Davidovich-Rikanati R, Shalev L, Baranes N, Meir A, Itkin M, et al. 2015. Recombinant yeast as a functional tool for understanding bitterness and cucurbitacin biosynthesis in watermelon (Citrullus spp.). Yeast 32(1):103−14 doi: 10.1002/yea.3049 |
[23] |
Martin PAW, Schroder RFW. 2000. The effect of cucurbitacin E glycoside, a feeding stimulant for corn rootworm, on biocontrol fungi: beauveria bassiana and Metarhizium anisopliae. Biocontrol Science and Technology 10(3):315−20 doi: 10.1080/09583150050044583 |
[24] |
Martin PAW, Blackburnsmall M, Schroder RFW, Matsuo K, Li BW. 2002. Stabilization of cucurbitacin E-glycoside, a feeding stimulant for diabroticite beetles, extracted from bitter Hawkesbury watermelon. Journal of Insect Science 2(1):19 doi: 10.1093/jis/2.1.19 |
[25] |
Kim YC, Choi D, Zhang C, Liu HF, Lee S. 2018. Profiling cucurbitacins from diverse watermelons (Citrullus spp.). Horticulture, Environment, and Biotechnology 59(4):557−66 doi: 10.1007/s13580-018-0066-3 |
[26] |
Kumbhalkar BB, Rajopadhye AA, Upadhye AS. 2013. Standardization of family Cucurbitaceae. Current Science 104(12):1595−96 |
[27] |
Deng Y, Liu G, Zhang H, Zhou P, Tang X, et al. 2024. Effects of wall materials on the physicochemical properties of spray-dried bitter gourd (Momordica charantia L.) powders. NPJ Science of Food 8(1):37 doi: 10.1038/s41538-024-00278-7 |
[28] |
Zhao G. 2015. Study on the chemical constituents and biological activities of bitter melon seeds and physalis. Thesis. Kunming University of Science and Technology, China |
[29] |
He L. 2007. Study on the chemical constituents of the bitter zucchini TIAN fruit. Thesis. Jilin University, China |
[30] |
Li L, Ma C, Ying Q, Wang Y. 2007. Preliminary report on the cultivation physiology of bitter bottle gourd. Anhui Agricultural Science Bulletin 2007:98−99,113 |
[31] |
Sew CC, Zaini NAM, Anwar F, Hamid AA, Saari N. 2010. Nutritionatiantianl composition and oil fatty acids of kundur [Benincasa hispida (Thunb.) Cogn.] seed. Pakistan Journal of Botany 42(5):3247−55 |
[32] |
Zhao G, Wang M, Luo C, Li J, Gong H, et al. 2022. Metabolome and transcriptome analyses of cucurbitacin biosynthesis in Luffa (Luffa acutangula). Frontiers in Plant Science 13:886870 doi: 10.3389/fpls.2022.886870 |
[33] |
Venkatesh J, Song K, Lee JH, Kwon JK, Kang BC. 2018. Development of Bi gene-based SNP markers for genotyping for bitter-free cucumber lines. Horticulture, Environment, and Biotechnology 59:231−38 doi: 10.1007/s13580-018-0029-8 |
[34] |
Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, et al. 2014. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346(6213):1084−88 doi: 10.1126/science.1259215 |
[35] |
Wehner TC, Liu JS, Staub JE. 1998. Two-gene interaction and linkage for bitterfree foliage in cucumber. Journal of the American Society for Horticultural Science 123(3):401−03 doi: 10.21273/JASHS.123.3.401 |
[36] |
Li Z, Qin Z, Zhou X, Xin M. 2015. Genetic analysis and molecular markers of bitterness in cucumber fruit. Molecular Plant Breeding 13(07):1578−83 doi: 10.13271/j.mpb.013.001578 |
[37] |
Walters SA, Shetty NV, Wehner TC. 2001. Segregation and linkage of several genes in cucumber. Journal of the American Society for Horticultural Science 126(4):442−50 doi: 10.21273/JASHS.126.4.442 |
[38] |
Gu X, Zhang S, Guo Y, Xu C. 2004. Genetic analysis of bitterness in cucumber. Acta Horticulturae Sinica 5:613−16 doi: 10.16420/j.issn.0513-353x.2004.05.011 |
[39] |
Gu X, Zhang S, Chi X. 2005. Inheritance and linkage relationships among the genes of leaf mutant andbitterness with other five major genes in cucumber. Acta Horticulturae Sinica 1:108−10 |
[40] |
Cowen NM, Heisel DB. 1983. Inheritance of two genes for spine color and linkages in a cucumber cross. Journal of Heredity 74(4):308−09 doi: 10.1093/oxfordjournals.jhered.a109796 |
[41] |
Miao H, Zhang S, Wang X, Zhang Z, Li M, et al. 2011. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182(2):167−76 doi: 10.1007/s10681-011-0410-5 |
[42] |
Gu X. 2006. AFLP molecular marker for the Bt gene controlling bitterness in cucumber fruit. Acta Horticulturae Sinica 33:567−70 |
[43] |
Ma D, Sun L, Gao S, Hu R, Liu M. 1996. Genetic study on bitterness in young melon fruits. Acta Horticulturae Sinica 3:49−52 |
[44] |
Liu J P. 2012. Genetic inheritance of major traits and molecular markers in progeny from crosses between wild and cultivated melons. Thesis. Northeast Agricultural University, China |
[45] |
Shang J, Kong S, Li N, Wang J, Zhou D, et al. 2020. Genetic mapping and localization of major QTL for bitterness in melon (Cucumis melo L.). Scientia Horticulturae 266:109286 doi: 10.1016/j.scienta.2020.109286 |
[46] |
Pitrat M. 2002. Gene list for melon. Cucurbit Genetics Cooperative Report 25:76−79 |
[47] |
Li N, Shang J, Zhou D, Li N, Wang J, et al. 2020. A presence-absence variation regulates fruit bitterness in melon (Cucumis melo L.). Journal of Plant Genetic Resources 21(02):377−85 doi: 10.13430/j.cnki.jpgr.20190625001 |
[48] |
Lee CW, Janick J. 1978. Inheritance of seedling bitterness in Cucumis melo L. HortScience 13(2):193−94 doi: 10.21273/HORTSCI.13.2.193 |
[49] |
Zhang H, Wang H, Zhou Z, He X. 2008. Genetic analysis of stem bitterness in melon. China Cucurbits and Vegetables 21:28−29 doi: 10.3969/j.issn.1673-2871.2008.04.009 |
[50] |
Navot N, Sarfatti M, Zamir D. 1990. Linkage relationships of genes affecting bitterness and flesh color in watermelon. Journal of Heredity 81:162−65 doi: 10.1093/oxfordjournals.jhered.a110952 |
[51] |
Guner N, Wehner TC. 2003. Gene list for watermelon. Cucurbit Genetics Cooperative Report 26:76−92 |
[52] |
Zhang Z, Zhang Y, Sun L, Qiu G, Sun Y, et al. 2018. Construction of a genetic map for Citrullus lanatus based on CAPS markers and mapping of three qualitative traits. Scientia Horticulturae 233:532−38 doi: 10.1016/j.scienta.2017.10.029 |
[53] |
Li B, Lu X, Dou J, Aslam A, Gao L, et al. 2018. Construction of a high-density genetic map and mapping of fruit traits in watermelon (Citrullus Lanatus L.) based on whole-genome resequencing. International Journal of Molecular Sciences 19(10):3268 doi: 10.3390/ijms19103268 |
[54] |
Li B. 2019. Construction of a high-density genetic map and fine mapping of candidate genes related to three fruit traits in watermelon. Thesis. Chinese Academy of Agricultural Sciences, China |
[55] |
Sun L, Wang X, Zhang Z, Cao P, Li Q, et al. 2019. Construction of a genetic linkage map and localization analysis of three traits in watermelon based on CAPS markers. China Cucurbits and Vegetables 32(08):227−28 |
[56] |
Gong C, Li B, Anees M, Zhu H, Zhao S, et al. 2022. Fine mapping reveals that the bHLH gene Cla011508 regulates the bitterness of watermelon fruit. Scientia Horticulturae 292:110626 doi: 10.1016/j.scienta.2021.110626 |
[57] |
Thakur MR, Choudhury B. 1966. Inheritance of some qualitative characters in Luffa species. Indian Journal of Genetics and Plant Breeding 26(1):79−86 |
[58] |
Prakash K, Pandey A, Radhamani J, Bisht IS. 2013. Morphological variability in cultivated and wild species of Luffa (Cucurbitaceae) from India. Genetic Resources and Crop Evolution 60(8):2319−29 doi: 10.1007/s10722-013-9999-7 |
[59] |
Rabei S, Rizk RM, Khedr AHA. 2013. Keys for and morphological character variation in some Egyptian cultivars of Cucurbitaceae. Genetic Resources and Crop Evolution 60(4):1353−64 doi: 10.1007/s10722-012-9924-5 |
[60] |
Song B. 2008. Genetic analysis of interspecific hybrids between ribbed sponge gourd and common sponge gourd. Thesis. Nanjing Agricultural University, China |
[61] |
Qin Y. 2018. Mapping of the bitterness gene in sponge gourd fruits. Thesis. South China Agricultural University, China |
[62] |
Wu Z. 2017. Study on molecular markers of fruit bitterness in sponge gourd. Thesis. South China Agricultural University, China |
[63] |
Zhang G. 1981. Gene interaction and bitterness in bottle gourd. Acta Horticulturae Sinica 4:43−48 |
[64] |
Borchers EA, Taylor RT. 1988. Inheritance of fruit bitterness in a cross of Cucurbita mixta × C. pepo. HortScience 23(3):603−04 doi: 10.21273/HORTSCI.23.3.603 |
[65] |
Zhang G. 1981. Interaction of genes and the expression of bitterness in Lagenaria siceraria [Gourd]. Acta Horticulturae Sinica 8(4):77−82 |
[66] |
Huang S, Li R, Zhang Z, Li L, Gu X, et al. 2009. The genome of the cucumber, Cucumis sativus L. Nature Genetics 41(12):1275−81 doi: 10.1038/ng.475 |
[67] |
Zhang S, Miao H, Cheng Z Zhang Z, Wu J, et al. 2011. The insertion-deletion(Indel) marker linked to the fruit bitterness gene (Bt) in cucumber. Journal of Agricultural Biotechnology 19(04):649−53 doi: 10.3969/j.issn.1674-7968.2011.04.008 |
[68] |
Zhang S. 2011. Genetic analysis and fine mapping of the bitterness gene in cucumber fruit. Thesis. Chinese Academy of Agricultural Sciences, China |
[69] |
Liu B, Guan X, Liang W, Chen J, Fang L, et al. 2018. Divergence and evolution of cotton bHLH proteins from diploid to allotetraploid. BMC Genomics 19:162 doi: 10.1186/s12864-018-4543-y |
[70] |
Li Q, Li H, Huang W, Xu Y, Zhou Q, et al. 2019. A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). GigaScience 8(6):giz072 doi: 10.1093/gigascience/giz072 |
[71] |
Li J, Luo X, Zhao P, Zeng Y. 2009. Post-modification enzymes in the biosynthesis of plant terpenoids. Acta Botanica Yunnanica 31(05):461−68 |
[72] |
Osbourn A. 2010. Gene clusters for secondary metabolic pathways: an emerging theme in plant biology. Plant Physiology 154:531−35 doi: 10.1104/pp.110.161315 |
[73] |
Hamberger B, Bak S. 2013. Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20120426 doi: 10.1098/rstb.2012.0426 |
[74] |
Fu J. 2018. Cloning and functional analysis of genes related to bitterness in melon and screening of related molecular markers. Thesis. Tianjin University, China |
[75] |
Luo F. 2020. Effects of different concentrations of CPPU on the synthesis of Cucurbitacin B, the bitter compound in thin-skinned melon. Thesis. Shenyang Agricultural University, China |
[76] |
Chen JC, Chiu MH, Nie RL, Cordell GA, Qiu SX. 2005. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Natural Product Reports 22(3):386−99 doi: 10.1039/b418841c |
[77] |
Chen X. 2015. Bitter but tasty cucumber. National Science Review 2(2):129−30 doi: 10.1093/nsr/nwv018 |
[78] |
Xu Y, Zhang H, Zhong Y, Jiang N, Zhong X, et al. 2022. Comparative genomics analysis of bHLH genes in cucurbits identifies a novel gene regulating cucurbitacin biosynthesis. Horticulture Research 9:uhac038 doi: 10.1093/hr/uhac038 |
[79] |
Leng P, Zhao J. 2020. Transcription factors as molecular switches to regulate drought adaptation in maize. Theoretical and Applied Genetics 133:1455−65 doi: 10.1007/s00122-019-03494-y |
[80] |
Wang M, Jiang N, Xu Y, Chen X, Wang C, et al. 2024. CmBr confers fruit bitterness under CPPU treatment in melon. Plant Biotechnology Journal 22:2724−37 doi: 10.1111/pbi.14399 |
[81] |
Zhong Y, Xue X, Liu Z, Ma Y, Zeng K, et al. 2017. Developmentally regulated glucosylation of bitter triterpenoid in cucumber by the UDP-glucosyltransferase UGT73AM3. Molecular Plant 10:1000−03 doi: 10.1016/j.molp.2017.02.005 |
[82] |
Zhong Y, Xun W, Wang X, Tian S, Zhang Y, et al. 2022. Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness. Nature Plants 8(8):887−96 doi: 10.1038/s41477-022-01201-2 |
[83] |
Shang Y, Huang S. 2015. Metabolic regulation and synthetic biology of bitter substances in cucumber. Life Sciences 27(08):1091−94 doi: 10.13376/j.cbls/2015150 |