[1]

Oyenihi AB, Belay ZA, Mditshwa A, Caleb OJ. 2022. "An apple a day keeps the doctor away": the potentials of apple bioactive constituents for chronic disease prevention. Journal of Food Science 87(6):2291−309

doi: 10.1111/1750-3841.16155
[2]

Belay ZA, Mashele TG, Botes WJ, Caleb OJ. 2023. Effects of zein-nisin edible coating on physicochemical and microbial load of 'Granny Smith' apple after long term storage. CyTA - Journal of Food 21(1):334−43

doi: 10.1080/19476337.2023.2199833
[3]

Thakur R, Pristijono P, Golding JB, Stathopoulos CE, Scarlett CJ, et al. 2018. Development and application of rice starch based edible coating to improve the postharvest storage potential and quality of plum fruit (Prunus salicina). Scientia Horticulturae 237:59−66

doi: 10.1016/j.scienta.2018.04.005
[4]

Zhang Q, Yang W, Zhang S, Tang J, Shi X, et al. 2023. Enhancing the applicability of gelatin-carboxymethyl cellulose films by cold plasma modification for the preservation of fruits. LWT 178:114612

doi: 10.1016/j.lwt.2023.114612
[5]

Oberlintner A, Vesel A, Naumoska K, Likozar B, Novak U. 2022. Permanent hydrophobic coating of chitosan/cellulose nanocrystals composite film by cold plasma processing. Applied Surface Science 597:153562

doi: 10.1016/j.apsusc.2022.153562
[6]

Bi D, Yang X, Yao L, Hu Z, Li H, et al. 2022. Potential food and nutraceutical applications of alginate: a review. Marine Drugs 20(9):564

doi: 10.3390/md20090564
[7]

Yaashikaa PR, Kamalesh R, Kumar PS, Saravanan A, Vijayasri K et al. 2023. Recent advances in edible coatings and their application in food packaging. Food Research International 173(2):113366

doi: 10.1016/j.foodres.2023.113366
[8]

Yepez X, Illera AE, Baykara H, Keener K. 2022. Recent advances and potential applications of atmospheric pressure cold plasma technology for sustainable food processing. Foods 11(13):1833

doi: 10.3390/foods11131833
[9]

Sani IK, Aminoleslami L, Mirtalebi SS, Sani MA, Mansouri E, et al. 2023. Cold plasma technology: applications in improving edible films and food packaging. Food Packaging and Shelf Life 37:101087

doi: 10.1016/j.fpsl.2023.101087
[10]

Belay ZA, Nyamende NE, Caleb OJ. 2022. Impact of cold plasma-mediated treatment on coated and packaged 'Monterey' strawberries during cold storage. South African Journal of Plant and Soil 39(4):302−07

doi: 10.1080/02571862.2022.2104946
[11]

Rashvand M, Matera A, Altieri G, Genovese F, Nikzadfar M, et al. 2024. Effect of dielectric barrier discharge cold plasma on the bio-nanocomposite film and its potential to preserve the quality of strawberry under modified atmosphere packaging. Food and Bioprocess Technology 17:1247−64

doi: 10.1007/s11947-023-03196-w
[12]

Akhavan-Mahdavi S, Mirzazadeh M, Alam Z, Solaimanimehr S. 2023. The effect of chitosan coating combined with cold plasma on the quality and safety of pistachio during storage. Food Science & Nutrition 11:4296−307

doi: 10.1002/fsn3.3355
[13]

Cui H, Cheng Q, Li C, Chen X, Lin L. 2022. Improving packing performance of lily polysaccharide based edible films via combining with sodium alginate and cold plasma treatment. International Journal of Biological Macromolecules 206:750−58

doi: 10.1016/j.ijbiomac.2022.02.181
[14]

Nsumpi AN, Belay ZA, Caleb OJ. 2020. Good intentions, bad outcomes: impact of mixed-fruit loading on banana fruit protein expression, physiological responses and quality. Food Packaging and Shelf Life 26:100594

doi: 10.1016/j.fpsl.2020.100594
[15]

Nyamende NE, Belay ZA, Keyser Z, Oyenihi AB, Caleb OJ. 2022. Impacts of alkaline-electrolyzed water treatment on physicochemical, phytochemical, antioxidant properties and natural microbial load on 'Granny Smith' apples during storage. International Journal of Food Science and Technology 57:447−56

doi: 10.1111/ijfs.15426
[16]

Yanclo LA, Sigge G, Belay ZA, October F, Caleb OJ. 2022. Microstructural, biochemical and drying characteristics of dehydrated 'Sunectwentyone' nectarines as affected by sodium metabisulphite. Food Science and Biotechnology 31:311−22

doi: 10.1007/s10068-022-01039-6
[17]

Iñiguez-Moreno M, Ragazzo-Sánchez JA, Calderón-Santoyo M. 2021. An extensive review of natural polymers used as coatings for postharvest shelf-life extension: trends and challenges. Polymers 13(19):3271

doi: 10.3390/polym13193271
[18]

Bao Y, Reddivari L, Huang JY. 2020. Development of cold plasma pretreatment for improving phenolics extractability from tomato pomace. Innovative Food Science & Emerging Technologies 65:102445

doi: 10.1016/j.ifset.2020.102445
[19]

Batista-Silva W, Nascimento VL, Medeiros DB, Nunes-Nesi A, Ribeiro DM, et al. 2018. Modifications in organic acid profiles during fruit development and ripening: correlation or causation? Frontiers in Plant Science 9:1689

doi: 10.3389/fpls.2018.01689
[20]

Zhou D, Chen S, Xu R, Tu S, Tu K. 2019. Interactions among chilling tolerance, sucrose degradation and organic acid metabolism in UV-C-irradiated peach fruit during postharvest cold storage. Acta Physiologiae Plantarum 41:79

doi: 10.1007/s11738-019-2871-4
[21]

Maurizzi E, Bigi F, Volpelli LA, Pulvirenti A. 2023. Improving the post-harvest quality of fruits during storage through edible packaging based on guar gum and hydroxypropyl methylcellulose. Food Packaging and Shelf Life 40:101178

doi: 10.1016/j.fpsl.2023.101178
[22]

Denoya GI, Polenta GA, Apóstolo NM, Cejas E, Fina B, et al. 2023. Effect of in-package cold plasma treatments on the quality of minimally processed apples. International Journal of Food Science and Technology 58:2465−75

doi: 10.1111/ijfs.16387
[23]

Ghadermazi R, Hamdipour S, Sadeghi K, Ghadermazi R, Khosrowshahi Asl A. 2019. Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—a review. Food Science & Nutrition 7(11):3363−77

doi: 10.1002/fsn3.1206
[24]

Valero D, Díaz-Mula HM, Zapata PJ, Guillén F, Martínez-Romero D, et al. 2013. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biology and Technology 77:1−6

doi: 10.1016/j.postharvbio.2012.10.011
[25]

Bang IH, Kim YE, Min SC. 2021. Preservation of mandarins using a microbial decontamination system integrating calcium oxide solution washing, modified atmosphere packaging, and dielectric barrier discharge cold plasma treatment. Food Packaging and Shelf Life 29:100682

doi: 10.1016/j.fpsl.2021.100682
[26]

Gomez-Gomez A, Brito-de la Fuente E, Gallegos C, Garcia-Perez JV, Quiles A, et al. 2022. Microbial inactivation by means of ultrasonic assisted supercritical CO2. Effect on cell ultrastructure. The Journal of Supercritical Fluids 179:105407

doi: 10.1016/j.supflu.2021.105407
[27]

Arrieta-Baez D, de Jesús Perea Flores M, Méndez-Méndez JV, Mendoza León HF, Gómez-Patiño MB. 2020. Structural studies of the cutin from two apple varieties: golden delicious and red delicious (Malus domestica). Molecules 25(24):5955

doi: 10.3390/molecules25245955
[28]

Leide J, Xavier de Souza A, Papp I, Riederer M. 2018. Specific characteristics of the apple fruit cuticle: investigation of early and late season cultivars 'Prima' and 'Florina' (Malus domestica Borkh.). Scientia Horticulturae 229:137−47

doi: 10.1016/j.scienta.2017.10.042
[29]

Konarska A. 2013. The structure of the fruit peel in two varieties of Malus domestica Borkh. (Rosaceae) before and after storage. Protoplasma 250:701−14

doi: 10.1007/s00709-012-0454-y
[30]

Veraverbeke EA, Van Bruaene N, Van Oostveldt P, Nicolaï BM. 2001. Non-destructive analysis of wax layer of apple (Malus domestica Borkh.) by mean of confocal laser scanning microscopy. Planta 213:525−33

doi: 10.1007/s004250100528
[31]

Curry E, Arey B. 2010. Apple cuticle: the perfect interface. Proc. Scanning Microscopy 2010, Monterey, California, United States, 2010. 7729:349−59. doi: 10.1117/12.853913

[32]

Thirumdas R, Kadam D, Annapure US. 2017. Cold plasma: an alternative technology for the starch modification. Food Biophysics 12:129−39

doi: 10.1007/s11483-017-9468-5