[1]

Guo J, Wu J, Ji Q, Wang C, Luo L, et al. 2008. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Journal of Genetics and Genomics 35(2):105−18

doi: 10.1016/S1673-8527(08)60016-8
[2]

Miller G, Mittler R. 2006. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Annual of Botany 98:279−88

doi: 10.1093/aob/mcl107
[3]

Wang L, Hou Y, Wang Y, Hu S, Zheng Y, et al. 2022. Genome-wide identification of heat shock transcription factors and potential role in regulation of antioxidant response under hot water and glycine betaine treatments in cold-stored peaches. Journal of the Science of Food and Agriculture 102:628−43

doi: 10.1002/jsfa.11392
[4]

Scharf KD, Rose S, Zott W, Schöffl F, Nover L. 1990. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO Journal 9:4495−501

doi: 10.1002/j.1460-2075.1990.tb07900.x
[5]

Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, et al. 2011. Genome-wide identification, classification, and analysis of heat shock transcription factor family in maize. BMC Genomics 12:76

doi: 10.1186/1471-2164-12-76
[6]

Chung E, Kim KM, Lee JH. 2013. Genome-wide analysis and molecular characterization of heat shock transcription factor gene family in Glycine max. Journal of Genetics and Genomics 40:127−35

doi: 10.1016/j.jgg.2012.12.002
[7]

Tang M, Xu L, Wang Y, Wang Y, Cheng W, Luo X, et al. 2019. Genome-wide characterization and evolutionary analysis of heat shock transcription factors (HSFs) to reveal their potential role under abiotic stresses in radish (Raphanus sativus L.). BMC Genomics 20:772

doi: 10.1186/s12864-019-6121-3
[8]

Mallick B, Kumari M, Pradhan SK, Parmeswaran C, Acharya GC, et al. 2021. Genome wide analysis and characterization of heat shock transcription factors (Hsfs) in common bean (Phaseolus vulgaris L.). Functional & Integrative Genomics 22:743−56

doi: 10.1007/s10142-022-00875-3
[9]

Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, et al. 2002. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes & Development 16:1555−67

doi: 10.1101/gad.228802
[10]

Czarnecka-Verner E, Yuan CX, Scharf KD, Englich G, Gurley WB. 2000. Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. Plant Molecular Biology 43:459−71

doi: 10.1023/A:1006448607740
[11]

Bienz M, Pelham HR. 1987. Mechanisms of heat-shock gene activation in higher eukaryotes. Advances in Genetics 24:31−72

doi: 10.1016/S0065-2660(08)60006-1
[12]

Liu Y, Zhang C, Chen J, Guo L, Li X, et al. 2013. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiology and Biochemistry 64:92−98

doi: 10.1016/j.plaphy.2012.12.013
[13]

Bechtold U, Albihlal WS, Lawson T, Fryer MJ, Sparrow PAC, et al. 2013. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. Journal of Experimental Botany 64:3467−81

doi: 10.1093/jxb/ert185
[14]

Ogawa D, Yamaguchi K, Nishiuchi T. 2007. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. Journal of Experimental Botany 58:3373−83

doi: 10.1093/jxb/erm184
[15]

Chen SS, Jiang J, Han XJ, Zhang YX, Zhuo RY, et al. 2018. Identification, expression analysis of the Hsf family, and characterization of class A4 in Sedum Alfredii Hance under cadmium stress. International Journal of Molecular sciences 19(4):1216

doi: 10.3390/ijms19041216
[16]

Shim D, Hwang JU, Lee J, Lee S, Choi Y, et al. 2009. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. The Plant Cell 21:4031−43

doi: 10.1105/tpc.109.066902
[17]

Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, et al. 2017. HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. Journal of Pineal Research 62(2):e12387

doi: 10.1111/jpi.12387
[18]

Ganesan V. 2008. Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Current Microbiology 56(4):403−07

doi: 10.1007/s00284-008-9099-7
[19]

Weber M, Trampczynska A, Clemens S. 2006. Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant, Cell & Environment 29(5):950−63

doi: 10.1111/j.1365-3040.2005.01479.x
[20]

Seregin IV, Shpigun LK, Ivanov VB. 2004. Distribution and toxic effects of cadmium and lead on maize roots. Russian Journal of Plant Physiology 51(4):525−33

doi: 10.1023/B:RUPP.0000035747.42399.84
[21]

Kou L, Song Y, Zhang X, Tan T. 2017. Comparison of four types of energy grasses as lignocellulosic feedstock for the production of bio-ethanol. Bioresource Technology 241:424−29

doi: 10.1016/j.biortech.2017.04.078
[22]

Wu S, Zhang X, Sun Y, Wu Z, Li T, et al. 2015. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM–EDS, TEM–EDS, and XAFS. Environmental Science & Technology 49(24):14036−47

doi: 10.1021/acs.est.5b03659
[23]

Schmer MR, Vogel KP, Mitchell RB, Perrin RK. 2008. Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences of the United States of America 105(2):464−69

doi: 10.1073/pnas.0704767105
[24]

Wang Q, Gu M, Ma X, Zhang H, Wang Y, et al. 2015. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils. Environmental Science and Pollution Research 22(21):16758−71

doi: 10.1007/s11356-015-4878-8
[25]

Liu C, Lou L, Deng J, Li D, Yuan S, et al. 2016. Morph-physiological responses of two switchgrass (Panicum virgatum L.) cultivars to cadmium stress. Grassland Science 62(2):92−101

doi: 10.1111/grs.12119
[26]

Houben D, Couder E, Sonnet P. 2013. Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization. Journal of Soils and Sediments 13(3):543−54

doi: 10.1007/s11368-012-0546-5
[27]

Song G, Zhang J, Wang Y, Ji Y, Fang Z, et al. 2023. Overexpression of PvBiP2 improved biomass yield and cadmium tolerance in switchgrass (Panicum virgatum L.). Journal of Hazardous Materials 446:130648

doi: 10.1016/j.jhazmat.2022.130648
[28]

hen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13(8):1194−202

doi: 10.1016/j.molp.2020.06.009
[29]

Karamanou DA, Aliferis KA. 2020. The yeast (Saccharomyces cerevisiae) YCF1 vacuole transporter: evidence on its implication into the yeast resistance to flusilazole as revealed by GC/EI/MS metabolomics. Pesticide Biochemistry and Physiology 165:104475

doi: 10.1016/j.pestbp.2019.09.013
[30]

Song G, Yuan S, Wen X, Xie Z, Lou L, et al. 2018. Transcriptome analysis of Cd-treated switchgrass root revealed novel transcripts and the importance of HSF/HSP network in switchgrass Cd tolerance. Plant Cell Reports 37:1485−97

doi: 10.1007/s00299-018-2318-1
[31]

Xu B, Huang L, Shen Z, Welbaum GE, Zhang X, et al. 2011. Selection and characterization of a new switchgrass (Panicum virgatum L.) line with high somatic embryogenic capacity for genetic transformation. Scientia Horticulturae 129(4):854−61

doi: 10.1016/j.scienta.2011.05.016
[32]

Zhang J, Li H, Huang X, Xing J, Yao J, et al. 2022. STAYGREEN-mediated chlorophyll a catabolism is critical for photosystem stability during heat-induced leaf senescence in perennial ryegrass. Plant, Cell & Environment 45(5):1412−27

doi: 10.1111/pce.14296
[33]

Zhang J, Zhang Q, Xing J, Li H, Miao J, et al. 2021. Acetic acid mitigated salt stress by alleviating ionic and oxidative damages and regulating hormone metabolism in perennial ryegrass (Lolium perenne L.). Grass Research 1:3

doi: 10.48130/GR-2021-0003
[34]

Zhang JY, Lee YC, Torres-Jerez I, Wang M, Yin Y, et al. 2013. Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). The Plant Journal 74(1):160−73

doi: 10.1111/tpj.12104
[35]

Han Y, Zveushe OK, Dong F, Ling Q, Dios VRD. 2021. Unraveling the effects of arbuscular mycorrhizal fungi on cadmium uptake and detoxification mechanisms in perennial ryegrass (Lolium perenne). Science of The Total Environment 798(1):149222

doi: 10.1016/j.scitotenv.2021.149222
[36]

Sun W, Ji B, Khoso SA, Tang H, Liu R, et al. 2018. An extensive review on restoration technologies for mining tailings. Environmental Science and Pollution Research 25:33911−25

doi: 10.1007/s11356-018-3423-y
[37]

Huang YC, Niu CY, Yang CR, Jinn TL. 2016. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiology 172(2):1182−99

doi: 10.1104/pp.16.00860
[38]

Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, et al. 2011. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant and Cell Physiology 52(5):933−45

doi: 10.1093/pcp/pcr045
[39]

Qiao X, Li M, Li L, Yin H, Wu J, et al. 2015. Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biology 15(1):12

doi: 10.1186/s12870-014-0401-5
[40]

Wang F, Dong Q, Jiang H, Zhu S, Chen B, et al. 2012. Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Molecular Biology Reports 39(2):1877−86

doi: 10.1007/s11033-011-0933-9
[41]

Scharf KD, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:104−19

doi: 10.1016/j.bbagrm.2011.10.002
[42]

Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, et al. 2001. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress & Chaperones 6(3):177−89

doi: 10.1379/1466-1268(2001)006<0177:aathst>2.0.co;2
[43]

Lohani N, Golicz AA, Singh MB, Bhalla PL. 2019. Genome-wide analysis of the Hsf gene family in Brassica oleracea and a comparative analysis of the Hsf gene family in B. oleracea, B. rapa and B. napus. Functional & Integrative Genomics 19:515−31

doi: 10.1007/s10142-018-0649-1
[44]

Zhu X, Huang C, Zhang L, Liu H, Yu J, et al. 2017. Systematic analysis of Hsf family genes in the Brassica napus genome reveals novel responses to heat, drought and high CO2 stresses. Frontiers in Plant Science 8:1174

doi: 10.3389/fpls.2017.01174
[45]

Busch W, Wunderlich M, Schöffl F. 2005. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. The Plant Journal 41(1):1−14

doi: 10.1111/j.1365-313X.2004.02272.x
[46]

Hu Y, Han YT, Wei W, Li YJ, Zhang K, et al. 2015. Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca. Frontiers in Plant Science 6:736

doi: 10.3389/fpls.2015.00736
[47]

Xiang J, Ran J, Zou J, Zhou X, Liu A, et al. 2013. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Reports 32(11):1795−806

doi: 10.1007/s00299-013-1492-4
[48]

Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schöffl F. 2004. Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiology 136(2):3148−58

doi: 10.1104/pp.104.042606
[49]

Chen H, Hwang JE, Lim CJ, Kim DY, Lee SY, et al. 2010. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochemical and Biophysical Research Communications 401(2):238−44

doi: 10.1016/j.bbrc.2010.09.038