[1] |
Kidane YO, Steinbauer MJ, Beierkuhnlein C. 2019. Dead end for endemic plant species? A biodiversity hotspot under pressure. Global Ecology and Conservation 19:e00670 doi: 10.1016/j.gecco.2019.e00670 |
[2] |
Mkala EM, Mwanzia V, Nzei J, Oluoch WA, Ngarega BK, et al. 2023. Predicting the potential impacts of climate change on the endangered endemic annonaceae species in east africa. Heliyon 9:e17405 doi: 10.1016/j.heliyon.2023.e17405 |
[3] |
Alvey AA. 2006. Promoting and preserving biodiversity in the urban forest. Urban Forestry & Urban Greening 5:195−201 doi: 10.1016/j.ufug.2006.09.003 |
[4] |
Adhikari D, Barik SK, Upadhaya K. 2012. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering 40:37−43 doi: 10.1016/j.ecoleng.2011.12.004 |
[5] |
Sun J, Qiu H, Guo J, Xu X, Wu D, et al. 2020. Modeling the potential distribution of Zelkova schneideriana under different human activity intensities and climate change patterns in China. Global Ecology and Conservation 21:e00840 doi: 10.1016/j.gecco.2019.e00840 |
[6] |
Nottingham CM, Glen AS, Stanley MC. 2019. Proactive development of invasive species damage functions prior to species reintroduction. Global Ecology and Conservation 17:e00534 doi: 10.1016/j.gecco.2019.e00534 |
[7] |
Johnson BA, Mader AD, Dasgupta R, Kumar P. 2020. Citizen science and invasive alien species: An analysis of citizen science initiatives using information and communications technology (ICT) to collect invasive alien species observations. Global Ecology and Conservation 21:e00812 doi: 10.1016/j.gecco.2019.e00812 |
[8] |
Moraes AM, Vancine MH, Moraes AM, de Oliveira Cordeiro CL, Pinto MP, et al. 2019. Predicting the potential hybridization zones between native and invasive marmosets within Neotropical biodiversity hotspots. Global Ecology and Conservation 20:e00706 doi: 10.1016/j.gecco.2019.e00706 |
[9] |
Yan H, Feng L, Zhao Y, Feng L, Wu D, et al. 2020. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Global Ecology and Conservation 21:e00856 doi: 10.1016/j.gecco.2019.e00856 |
[10] |
Banerjee AK, Mukherjee A, Guo W, Ng WL, Huang Y. 2019. Combining ecological niche modeling with genetic lineage information to predict potential distribution of Mikania micrantha Kunth in South and Southeast Asia under predicted climate change. Global Ecology and Conservation 20:e00800 doi: 10.1016/j.gecco.2019.e00800 |
[11] |
Abdelaal M, Fois M, Fenu G, Bacchetta G. 2019. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecological Informatics 50:68−75 doi: 10.1016/j.ecoinf.2019.01.003 |
[12] |
Gizaw A, Kebede M, Nemomissa S, Ehrich D, Bekele B, et al. 2013. Phylogeography of the heathers Erica arborea and E. trimera in the afro-alpine 'sky islands' inferred from AFLPs and plastid DNA sequences. Flora 208:453−63 doi: 10.1016/j.flora.2013.07.007 |
[13] |
La Mantia T, Giaimi G, La Mela Veca DS, Pasta S. 2007. The role of traditional Erica arborea L. management practices in maintaining northeastern Sicily's cultural landscape. Forest Ecology and Management 249:63−70 doi: 10.1016/j.foreco.2007.05.029 |
[14] |
Harvey-Brown Y, Barstow M. 2017. Erica arborea: the IUCN red list of threatened species 2017. https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T73094040A109616921.en |
[15] |
Azene BT. 2007. Useful trees and shrubs of Ethiopia: identification, propagation and management for 17 agroclimatic zones. RELMA in ICRAF Project, Nairobi, Kenya |
[16] |
Kindt R, van Breugel P, Lillesø JB, Bingham M, Demissew S. 2011. Potential natural vegetation of eastern Africa. Description and tree species composition for bushland and thicket potential natural vegetation types. Volume 4. University of Copenhagen, Copenhagen |
[17] |
Fichtl R, Adi A. 1994. Honeybee Flora of Ethiopia. Margraf Verlag |
[18] |
Aynekulu E, Aerts R, Moonen P, Denich M, Gebrehiwot K, et al. 2012. Altitudinal variation and conservation priorities of vegetation along the Great Rift Valley escarpment, northern Ethiopia. Biodivers Conserv 21:2691−2707 doi: 10.1007/s10531-012-0328-9 |
[19] |
Vivero JL, Kelbessa E, Demissew S. 2005. The red list of endemic trees and Shrubs of Ethiopia and Eritrea. Cambridge, UK: Fauna & Flora International. |
[20] |
WeForest. 2018. The Great Rift Valley Dry Afromontane: Desa'a State Forest Management Plan. WeForest-Ethiopia, Mekelle, Tigrai, Ethiopia |
[21] |
Jacob M, De Ridder M, Vandenabeele M, Asfaha T, Nyssen J, et al. 2020. The response of Erica arborea L. tree growth to climate variability at the afro-alpine tropical highlands of north Ethiopia. Forests 11:310 doi: 10.3390/f11030310 |
[22] |
Gebremedhn H, Gebrewahid Y, Haile GG, Hadgu G, Atsbha T, et al. 2024. Projecting the impact of climate change on honey bee plant habitat distribution in Northern Ethiopia. Scientific Reports 14:15866 doi: 10.1038/s41598-024-66949-3 |
[23] |
Yebeyen D, Nemomissa S, Hailu BT, Zewdie W, Sileshi GW, et al. 2022. Modeling and Mapping Habitat Suitability of Highland Bamboo under Climate Change in Ethiopia. Forests 13:859 doi: 10.3390/f13060859 |
[24] |
Wan JN, Mbari NJ, Wang SW, Liu B, Mwangi BN, et al. 2021. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar. Plant Diversity 43:117−24 doi: 10.1016/j.pld.2020.07.001 |
[25] |
Noulèkoun F, Chude S, Zenebe A, Birhane E. 2017. Climate Change Impacts on Faidherbia albida (Delile) A. Chev. Distribution in Dry Lands of Ethiopia. African Journal of Ecology 55:233−43 doi: 10.1111/aje.12345 |
[26] |
Qin A, Liu B, Guo Q, Bussmann RW, Ma F, et al. 2017. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation 10:139−46 doi: 10.1016/j.gecco.2017.02.004 |
[27] |
Urbani F, Alessandro PD, Biondi M. 2017. Using Maximum Entropy Modeling (MaxEnt) to predict future trends in the distribution of high altitude endemic insects in response to climate change. Bulletin of Insectology 70:189−200 |
[28] |
Birhane E, Asgedom KT, Tadesse T, Hishe H, Abrha H, et al. 2020. Vulnerability of baobab (Adansonia digitata L.) to human disturbances and climate change in western Tigray, Ethiopia: Conservation concerns and priorities. Global Ecology and Conservation 22:e00943 doi: 10.1016/j.gecco.2020.e00943 |
[29] |
Johansson MU, Fetene M, Malmer A, Granström A. 2012. Tending for cattle: traditional fire management in Ethiopian Montane Heathlands. Ecology and Society 17(3):19−15 doi: 10.5751/es-04881-170319 |
[30] |
Johansson M, Rooke T, Fetene M, Granström A. 2010. Browser selectivity alters post-fire competition between Erica arborea and E. trimera in the sub-alpine heathlands of Ethiopia. Plant Ecology 207:149−60 doi: 10.1007/s11258-009-9661-9 |
[31] |
Adeyemo SM, Granger JJ. 2023. Habitat suitability model and range shift analysis for American Chestnut (Castanea dentata) in the United States. Trees, Forests and People 11:100360 doi: 10.1016/j.tfp.2022.100360 |
[32] |
Haile M, Semere H, Birhane E, Abraha Z, Rannestad MM, et al. 2023. Distribution of expansive shrubs under climate change scenarios and their socio-economic impacts in a dry Afromontane Forest. Trees, Forests and People 13:100414 doi: 10.1016/j.tfp.2023.100414 |
[33] |
Zurell D, Franklin J, König C, Bouchet PJ, Dormann CF. 2020. A standard protocol for reporting species distribution models. Ecography 43:1261−77 doi: 10.1111/ecog.04960 |
[34] |
Robiansyah I, Hajar AS. 2015. Predicting current and future distribution of endangered tree Dracaena ombet Kotschy and Peyr. under climate change. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 87:225−32 doi: 10.1007/s40011-015-0588-8 |
[35] |
Phillips SJ, Dudík M, Schapire RE. 2004. A maximum entropy approach to species distribution modeling. ICML '04: Proceedings of the twenty-first international conference on Machine learning, Banff Alberta Canada, 4-8 July, 2004. New York, United States: Association for Computing Machinery. pp. 655–62. doi: 10.1145/1015330.101541 |
[36] |
Birhane E, Desalegn T, Kebede F, Giday K, Hishe H, et al. 2019. In situ leaf litter production, decomposition and nutrient release of dry Afromontane trees. East African Agricultural and Forestry Journal 83:176−90 doi: 10.1080/00128325.2019.1598060 |
[37] |
Aynekulu E, Aerts R, Denich M, Negussie A, Friis I, et al. 2016. Plant diversity and regeneration in a disturbed isolated dry Afromontane forest in northern Ethiopia. Folia Geobotanica 51:115−27 doi: 10.1007/s12224-016-9247-y |
[38] |
WeForest, GIZ. 2019. Exploratory forest resources survey in Tigrayx. Report. Mekelle, Ethiopia. |
[39] |
Wanga VO, Ngarega BK, Oulo MA, Mkala EM, Ngumbau VM, et al. 2024. Projected impacts of climate change on the habitat of Xerophyta species in Africa. Plant Diversity 46:91−100 doi: 10.1016/j.pld.2023.05.001 |
[40] |
He Q, Zhao R, Zhu Z. 2020. Geographical distribution simulation and comparative analysis of Carpinus viminea and C. londoniana. Global Ecology and Conservation 21:e00825 doi: 10.1016/j.gecco.2019.e00825 |
[41] |
Kurpis J, Serrato-Cruz MA, Feria Arroyo TP. 2019. Modeling the effects of climate change on the distribution of Tagetes lucida Cav. (Asteraceae). Global Ecology and Conservation 20:e00747 doi: 10.1016/j.gecco.2019.e00747 |
[42] |
Gebrewahid Y, Abrehe S, Meresa E, Eyasu G, Abay K, et al. 2020. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecological Processes 9:6 doi: 10.1186/s13717-019-0210-8 |
[43] |
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965−78 doi: 10.1002/joc.1276 |
[44] |
Jacobsen CD, Brown DJ, Flint WD, Pauley TK, Buhlmann KA, et al. 2020. Vulnerability of high-elevation endemic salamanders to climate change: a case study with the Cow Knob Salamander (Plethodon punctatus). Global Ecology and Conservation 21:e00883 doi: 10.1016/j.gecco.2019.e00883 |
[45] |
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231−59 doi: 10.1016/j.ecolmodel.2005.03.026 |
[46] |
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME, et al. 2017. Opening the black box: an open-source release of Maxent. Ecography 40:887−93 doi: 10.1111/ecog.03049 |
[47] |
Moscetti R, Berhe DH, Agrimi M, Haff RP, Liang P, et al. 2021. Pine nut species recognition using NIR spectroscopy and image analysis. Journal of Food Engineering 292:110357 doi: 10.1016/j.jfoodeng.2020.110357 |
[48] |
Dai X, Wu W, Ji L, Tian S, Yang B, et al. 2022. MaxEnt model-based prediction of potential distributions of Parnassia wightiana (Celastraceae) in China. Biodiversity and Conservation 10:e81073 doi: 10.3897/BDJ.10.e81073 |
[49] |
Hussain Mir A, Tyub S, Kamili AN. 2020. Ecology, distribution mapping and conservation implications of four critically endangered endemic plants of Kashmir Himalaya. Saudi Journal of Biological Sciences 27:2380−89 doi: 10.1016/j.sjbs.2020.05.006 |
[50] |
IUCN Standards and Petitions Committee. 2019. Guidelines for Using the IUCN Red List Categories and Criteria. www.iucnredlist.org/resources/redlistguidelines |
[51] |
Kumar S, Stohlgren TJ. 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment 1(4):94−96 |
[52] |
Yan H, Feng LL, Zhao Y, Feng LL, Zhu C. 2020. Predicting the potential distribution of an invasive species, Erigeron canadensis L., in China with a maximum entropy model. Global Ecology and Conservation 21:e00822 doi: 10.1016/j.gecco.2019.e00822 |
[53] |
Birhane E, Gidey T, Abrha H, Brhan A, Zenebe A, et al. 2023. Impact of land-use and climate change on the population structure and distribution range of the rare and endangered Dracaena ombet and Dobera glabra in northern Ethiopia. Journal for Nature Conservation 76:126506 doi: 10.1016/j.jnc.2023.126506 |
[54] |
Gufi Y, Manaye A, Tesfamariam B, Abrha H, Tesfaye M, et al. 2023. Modeling impacts of climate change on the geographic distribution and abundances of Tamarindus indica in Tigray region, Ethiopia. Heliyon 9:e17471 doi: 10.1016/j.heliyon.2023.e17471 |
[55] |
Gufi Y, Manaye A, Tesfamariam B, Abrha H, Gidey T, et al. 2023. Modeling climate change impact on distribution and abundance of Balanites aegyptiaca in drylands of Ethiopia. Modeling Earth Systems and Environment 9:3415−27 doi: 10.1007/s40808-022-01666-2 |
[56] |
Esser LF, Weldemariam EC. 2023. Climate changes could jeopardize a main source of livelihood in Africa's drylands. Journal for Nature Conservation 71:126319 doi: 10.1016/j.jnc.2022.126319 |
[57] |
Moudrý V, Bazzichetto M, Remelgado R, Devillers R, Lenoir J, et al. 2024. Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter. Ecography 2024:e07294 doi: 10.1111/ecog.07294 |
[58] |
Mkala EM, Mutinda ES, Wanga VO, Oulo MA, Oluoch WA, et al. 2022. Modeling impacts of climate change on the potential distribution of three endemic Aloe species critically endangered in East Africa. Ecological Informatics 71:101765 doi: 10.1016/j.ecoinf.2022.101765 |
[59] |
Pinedo-Alvarez C, Renteria-Villalobos M, Aguilar-Soto V, Vega-Mares JH, Melgoza-Castillo A. 2019. Distribution dynamics of Picea chihuahuana Martínez populations under different climate change scenarios in Mexico. Global Ecology and Conservation 17:e00559 doi: 10.1016/j.gecco.2019.e00559 |
[60] |
Wang J, Wang F, Wang R, Zhang J, Zhao X, et al. 2019. Modeling the effects of bioclimatic characteristics and distribution on the occurrence of Cyrtotrachelus buqueti in the Sichuan Basin. Global Ecology and Conservation 17:e00540 doi: 10.1016/j.gecco.2019.e00540 |
[61] |
Khafagia O, Omarb K. 2018. Geographical attributes analysis for Egyptian Hypericum sinaicum. Universal Journal of Environmental Research and Technology 2(6):500−14 |
[62] |
Tefera AS, Ayoade JO, Bello NJ. 2019. Comparative analyses of SPI and SPEI as drought assessment tools in Tigray Region, Northern Ethiopia. SN Applied Sciences 1:1265 doi: 10.1007/s42452-019-1326-2 |
[63] |
Yimer F, Ledin S, Abdelkadir A. 2006. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 135:335−44 doi: 10.1016/j.geoderma.2006.01.005 |
[64] |
Aerts R. 2019. Forest and woodland vegetation in the Highlands of Dogu'a Tembien. In Geo-trekking in Ethiopia's Tropical Mountains: The Dogu'a Tembien District, eds. Nyssen J, Jacob M, Frankl A. pp 233–50. doi: 10.1007/978-3-030-04955-3_15 |
[65] |
Gidey T, Birhane E, Solomon N, Atsbha T, Manaye A, et al. 2024. Population and conservation status of the endangered Dracaena ombet tree in dry Afromontane forests. Global Ecology and Conservation 50:e02809 doi: 10.1016/j.gecco.2024.e02809 |