[1] |
Perry L, Dickau R, Zarrillo S, Holst I, Pearsall DM, et al. 2007. Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science 315:986−88 doi: 10.1126/science.1136914 |
[2] |
Zou Z, Zou X. 2021. Geographical and ecological differences in pepper cultivation and consumption in China. Frontiers in Nutrition 8:718517 doi: 10.3389/fnut.2021.718517 |
[3] |
Wang L, Zhong Y, Liu J, Ma R, Mao Y et al. 2023. Pigment biosynthesis and molecular genetics of fruit color in pepper. Plants 12:2156 doi: 10.3390/plants12112156 |
[4] |
Lightbourn GJ, Griesbach RJ, Novotny JA, Clevidence BA, Rao DD, et al. 2008. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L. The Journal of Heredity 99:105−11 doi: 10.1093/jhered/esm108 |
[5] |
Guo Q, Zhang T, Li C, Xiang X, Wang X, et al. 2023. A new pepper F1 hybrid — 'Qujiao No. 5'. China Vegetables 2023:106−08 doi: 10.19928/j.cnki.1000-6346.2023.0043 |
[6] |
Lui H, Zhang T, Li C, Xiang X, Xu J. 2012. A new pepper F1 hybrid — 'Qujiao No.1'. China Vegetables 2012:102−03 |
[7] |
Brand A, Borovsky Y, Meir S, Rogachev I, Aharoni A, et al. 2011. pc8.1, a major QTL for pigment content in pepper fruit, is associated with variation in plastid compartment size. Planta 235:579−88 doi: 10.1007/s00425-011-1530-9 |
[8] |
Brand A, Borovsky Y, Hill TA, Rahman KA, Bellalou A, et al. 2014. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit. Theoretical and Applied Genetics 127:2139−48 doi: 10.1007/s00122-014-2367-y |
[9] |
Borovsky Y, Monsonego N, Mohan V, Shabtai S, Kamara I, et al. 2019. The zinc-finger transcription factor CcLOL1 controls chloroplast development and immature pepper fruit color in Capsicum chinense and its function is conserved in tomato. The Plant Journal 99:41−55 doi: 10.1111/tpj.14305 |
[10] |
Pan Y, Bradley G, Pyke K, Ball G, Lu C, et al. 2013. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiology 161:1476−85 doi: 10.1104/pp.112.212654 |
[11] |
Andersen JR, Lübberstedt T. 2003. Functional markers in plants. Trends in Plant Science 8:554−60 doi: 10.1016/j.tplants.2003.09.010 |
[12] |
Varshney RK, Graner A, Sorrells ME. 2005. Genomics-assisted breeding for crop improvement. Trends in Plant Science 10:621−30 doi: 10.1016/j.tplants.2005.10.004 |
[13] |
Porebski S, Bailey LG, Baum BR. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15:8−15 doi: 10.1007/BF02772108 |
[14] |
Chen Y, Chen Y, Shi C, Huang Z, Li S, et al. 2018. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7:gix120 doi: 10.1093/gigascience/gix120 |
[15] |
Qin C, Yu C, Shen Y, Fang X, Chen L, et al. 2014. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proceedings of the National Academy of Sciences of the United States of America 111:5135−40 doi: 10.1073/pnas.1400975111 |
[16] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−303 doi: 10.1101/gr.107524.110 |
[17] |
Hu B, Jin J, Guo A, Zhang H, Luo J, et al. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296−97 doi: 10.1093/bioinformatics/btu817 |
[18] |
He C, Holme J, Anthony J. 2014. SNP genotyping: the KASP assay. In Crop Breeding, eds Fleury D, Whitford R. New York, NY: Humana Press. Volume 1145. pp. 75−86. doi: 10.1007/978-1-4939-0446-4_7 |
[19] |
Matsufuji H, Ishikawa K, Nunomura O, Chino M, Takeda M. 2007. Anti-oxidant content of different coloured sweet peppers, white, green, yellow, orange and red (Capsicum annuum L.). International Journal of Food Science & Technology 42:1482−88 doi: 10.1111/j.1365-2621.2006.01368.x |
[20] |
Xiao ZB, Zhu JC, Feng T, Tian HX, Yu HY, et al. 2010. Comparison of volatile components in Chinese traditional pickled peppers using HS–SPME–GC–MS, GC–O and multivariate analysis. Natural Product Research 24:1939−53 doi: 10.1080/14786419.2010.506875 |
[21] |
Mavi K, Hacbekir H, Uzunoğlu F, Türkmen M. 2021. The use of volatile compounds as an alternative method in pepper breeding (Capsicum baccatum var. pendulum). Ciência Rural 51:e0201066 doi: 10.1590/0103-8478cr20201066 |
[22] |
Ayalew H, Tsang PW, Chu C, Wang J, Liu S, et al. 2019. Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat. PLoS One 14:e0217222 doi: 10.1371/journal.pone.0217222 |
[23] |
Rahman MZ, Hasan MT, Rahman J. 2023. Kompetitive Allele-Specific PCR (KASP): an efficient high-throughput genotyping platform and its applications in crop variety development. In Molecular Marker Techniques, ed. Kumar N. Singapore: Springer. pp. 25–54. doi: 10.1007/978-981-99-1612-2_2 |
[24] |
Wilkes JE, Fallen B, Saski C, Agudelo P. 2023. Development of SNP molecular markers associated with resistance to reniform nematode in soybean using KASP genotyping. Euphytica 219:27 doi: 10.1007/s10681-022-03144-3 |