[1] |
Wang SL, Li L, Ci XQ, Conran JG, Li J. 2019. Taxonomic status and distribution of Mirabilis himalaica (Nyctaginaceae). Journal of Systematics Evolution 57(5):431−39 doi: 10.1111/jse.12466 |
[2] |
Rana HK, Luo D, Rana S K, Sun H. 2020. Geological and climatic factors affect the population genetic connectivity in mirabilis himalaica (nyctaginaceae): insight from phylogeography and dispersal corridors in the himalaya-hengduan biodiversity hotspot. Frontiers in Plant Science 10:1721 doi: 10.3389/fpls.2019.01721 |
[3] |
Lan X, Hong Q, Xia X, Yin W. 2015. Establishment of hairy root cultures and analysis of rotenoid in tibetan medicinal plant "mirabilis himalaica". Plant Omics 8(4):335−39 |
[4] |
IUCN. 2001. IUCN Red List Categories and Criteria. Natural Resources, Species Survival Commission. www.iucnredlist.org |
[5] |
IUCN. 2003. Guidelines for Application of IUCN Red List Criteria at Regional Levels: Version 3.0. Species Survival Commission. www.iucnredlist.org/resources/regionalguidelines |
[6] |
Shao Y, Peng L, Lin H, Li J, Yu Y, et al. 2020. Comprehensive investigation of the differences of the roots of wild and cultivated Mirabilis himalaica (Edgew) heim based on macroscopic and microscopic identification using HPLC fingerprint. Evidence-Based Complementary and Alternative Medicine 2020(1):8626439 doi: 10.1155/2020/8626439 |
[7] |
Li X, Yin M, Yang X, Yang G, Gao X. 2018. Flavonoids from Mirabilis himalaica. Fitoterapia 127:89−95 doi: 10.1016/j.fitote.2018.02.005 |
[8] |
Linghu L, Fan H, Hu Y, Zou Y, Yang P, et al. 2014. Mirabijalone E: a novel rotenoid from Mirabilis himalaica inhibited A549 cell growth in vitro and in vivo. Journal of Ethnopharmacology 155(1):326−333 doi: 10.1016/j.jep.2014.05.034 |
[9] |
Huang Q, Zhang L, Lan X, Chen Y, Lu C. 2022. Achene mucilage formation process and extrusion from hydrated pericarp of Mirabilis himalaica. Horticultural Plant Journal 8(2):251−60 doi: 10.1016/j.hpj.2021.10.001 |
[10] |
Li R, Liu H, Liu Y, Guo J, Chen Y, et al. 2023. Insights into the mechanism underlying UV-B induced flavonoid metabolism in callus of a Tibetan medicinal plant Mirabilis himalaica. Journal of Plant Physiology 288:154074 doi: 10.1016/j.jplph.2023.154074 |
[11] |
Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut–dip–budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4(1):100345 doi: 10.1016/j.xinn.2022.100345 |
[12] |
Wu M, Chen A, Li X, Li X, Hou X, et al. 2024. Advancements in delivery strategies and non-tissue culture regeneration systems for plant genetic transformation. Advanced Biotechnology 2(4):34 doi: 10.1007/s44307-024-00041-9 |
[13] |
Bahramnejad B, Naji M, Bose R, Jha S. 2019. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnology Advances 37(7):107405 doi: 10.1016/j.biotechadv.2019.06.004 |
[14] |
Wang H, Zheng Y, Zhou Q, Li Y, Liu T, et al. 2024. Fast, simple, efficient Agrobacterium rhizogenes-mediated transformation system to non-heading chinese cabbage with transgenic roots. Horticultural Plant Journal 10(2):450−60 doi: 10.1016/j.hpj.2023.03.018 |
[15] |
Wang H, Cheng K, Li T, Lan X, Shen L, et al. 2024. A highly efficient Agrobacterium rhizogenes-mediated hairy root transformation method of idesia polycarpa and the generation of transgenic plants. Plants 13(13):1791 doi: 10.3390/plants13131791 |
[16] |
Lu J, Li S, Deng S, Wang M, Wu Y, et al. 2024. A method of genetic transformation and gene editing of succulents without tissue culture. Plant Biotechnology Journal 22(7):1981−88 doi: 10.1111/pbi.14318 |
[17] |
Liu L, Qu J, Wang C, Liu M, Zhang C, et al. 2024. An efficient genetic transformation system mediated by Rhizobium rhizogenes in fruit trees based on the transgenic hairy root to shoot conversion. Plant Biotechnology Journal 22(8):2093−2103 doi: 10.1111/pbi.14328 |
[18] |
Cao X, Xie H, Song M, Zhao L, Liu H, et al. 2024. Simple method for transformation and gene editing in medicinal plants. Journal of Integrative Plant Biology 66(1):17−19 doi: 10.1111/jipb.13593 |
[19] |
Zhao Y, Han J, Tan J, Yang Y, Li S, et al. 2022. Efficient assembly of long DNA fragments and multiple genes with improved nickase-based cloning and cre/loxP recombination. Plant Biotechnology Journal 20(10):1983−95 doi: 10.1111/pbi.13882 |
[20] |
Hu GY, Ma JY, Li F, Zhao JR, Xu FC, et al. 2022. Optimizing the protein fluorescence reporting system for somatic embryogenesis regeneration screening and visual labeling of functional genes in cotton. Frontiers in Plant Science 12:825212 doi: 10.3389/fpls.2021.825212 |
[21] |
Zheng Z, Liu T, Chai N, Zeng D, Zhang R, et al. 2024. PhieDBEs : a DBD-containing, PAM-flexible, high-efficiency dual base editor toolbox with wide targeting scope for use in plants. Plant Biotechnology Journal 22(11):3164−74 doi: 10.1111/pbi.14438 |
[22] |
Zhang R, Chai N, Liu T, Zheng Z, Lin Q, et al. 2024. The type V effectors for CRISPR/Cas-mediated genome engineering in plants. Biotechnology Advances 74:108382 doi: 10.1016/j.biotechadv.2024.108382 |
[23] |
Zhu Q, Tan J; Liu YG. 2022. Molecular farming using transgenic rice endosperm. Trends in Biotechnology 40(10):1248−60 doi: 10.1016/j.tibtech.2022.04.002 |
[24] |
Mei G, Chen A, Wang Y, Li S, Wu M, et al. 2024. A simple and efficient in planta transformation method based on the active regeneration capacity of plants. Plant Communications 5(4):100822 doi: 10.1016/j.xplc.2024.100822 |
[25] |
Deng Y, Duan A, Li T, Wang H, Xiong A. 2023. A betaxanthin-based visible and fluorescent reporter for monitoring plant transformation. The Crop Journal 11(2):666−71 doi: 10.1016/j.cj.2022.10.010 |