[1] |
Spreafico F, Fernandez CV, Brok J, Nakata K, Vujanic G, et al. 2021. Wilms tumour. Nature Reviews Disease Primers 7:75 doi: 10.1038/s41572-021-00308-8 |
[2] |
Nakata K, Colombet M, Stiller CA, Pritchard-Jones K, Steliarova-Foucher E, et al. 2020. Incidence of childhood renal tumours: An international population-based study. International Journal of Cancer 147:3313−27 doi: 10.1002/ijc.33147 |
[3] |
Perotti D, Williams RD, Wegert J, Brzezinski J, Maschietto M, et al. 2024. Hallmark discoveries in the biology of Wilms tumour. Nature Reviews Urology 21:158−80 doi: 10.1038/s41585-023-00824-0 |
[4] |
Ni X, Li Z, Li X, Zhang X, Bai G, et al. 2022. Socioeconomic inequalities in cancer incidence and access to health services among children and adolescents in China: a cross-sectional study. Lancet 400:1020−32 doi: 10.1016/S0140-6736(22)01541-0 |
[5] |
Ortiz MV, Koenig C, Armstrong AE, Brok J, de Camargo B, et al. 2023. Advances in the clinical management of high-risk Wilms tumors. Pediatric Blood & Cancer 70:e30342 doi: 10.1002/pbc.30342 |
[6] |
Brok J, Lopez-Yurda M, Tinteren HV, Treger TD, Furtwängler R, et al. 2018. Relapse of Wilms' tumour and detection methods: a retrospective analysis of the 2001 Renal Tumour Study Group-International Society of Paediatric Oncology Wilms' tumour protocol database. The Lancet Oncology 19:1072−81 doi: 10.1016/S1470-2045(18)30293-6 |
[7] |
Turnbull C, Perdeaux ER, Pernet D, Naranjo A, Renwick A, et al. 2012. A genome-wide association study identifies susceptibility loci for Wilms tumor. Nature Genetics 44:681−84 doi: 10.1038/ng.2251 |
[8] |
Fu W, Zhu J, Xiong SW, Jia W, Zhao Z, et al. 2017. BARD1 Gene Polymorphisms Confer Nephroblastoma Susceptibility. EBioMedicine 16:101−5 doi: 10.1016/j.ebiom.2017.01.038 |
[9] |
Zhuo Z, Lu H, Zhu J, Hua RX, Li Y, et al. 2020. METTL14 gene polymorphisms confer neuroblastoma susceptibility: an eight-center case-control study. Molecular Therapy Nucleic Acids 22:17−26 doi: 10.1016/j.omtn.2020.08.009 |
[10] |
Ma L, Hua RX, Lin H, Zhu J, Fu W, et al. 2020. The contribution of WTAP gene variants to Wilms tumor susceptibility. Gene 754:144839 doi: 10.1016/j.gene.2020.144839 |
[11] |
Ferrara M, Capozzi L, Russo R. 2009. Impact of the MTHFR C677T polymorphism on risk of Wilms tumor: case-control study. Journal of Pediatric Hematology/Oncology 31:256−58 doi: 10.1097/MPH.0b013e318196a40c |
[12] |
Radojevic-Skodric S, Basta-Jovanovic G, Brasanac D, Nikolic N, Bogdanovic L, et al. 2012. Survivin gene promoter −31 G/C polymorphism is associated with Wilms tumor susceptibility in Serbian children. Journal of Pediatric Hematology/Oncology 34:e310−e314 doi: 10.1097/MPH.0b013e31825d3076 |
[13] |
Reinhard L, Sridhara S, Martin Hällberg B. 2017. The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria. Nucleic Acids Research 45:12469−80 doi: 10.1093/nar/gkx902 |
[14] |
Metodiev MD, Thompson K, Alston CL, Morris AAM, He L, et al. 2016. Recessive mutations in TRMT10C cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies. The American Journal of Human Genetics 99:993−1000 doi: 10.1016/j.ajhg.2016.03.010 |
[15] |
Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, et al. 2012. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase-extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Research 40:11583−93 doi: 10.1093/nar/gks910 |
[16] |
Helm M, Giegé R, Florentz C. 1999. A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. Biochemistry 38:13338−46 doi: 10.1021/bi991061g |
[17] |
Wang F, Zhang D, Zhang D, Li P, Gao Y. 2021. Mitochondrial Protein translation: emerging roles and clinical significance in disease. Frontiers in Cell and Developmental Biology 9:675465 doi: 10.3389/fcell.2021.675465 |
[18] |
Helm M, Brulé H, Degoul F, Cepanec C, Leroux JP, et al. 1998. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Research 26:1636−43 doi: 10.1093/nar/26.7.1636 |
[19] |
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. 2024. The bioenergetic landscape of cancer. Molecular Metabolism 86:101966 doi: 10.1016/j.molmet.2024.101966 |
[20] |
Zong Y, Li H, Liao P, Chen L, Pan Y, et al. 2024. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduction and Targeted Therapy 9:124 doi: 10.1038/s41392-024-01839-8 |
[21] |
Liu T, Sun L, Li ZZ, Yang K, Chen JM, et al. 2023. The m6A/m5C/m1A regulator genes signature reveals the prognosis and is related with immune microenvironment for hepatocellular carcinoma. BMC Gastroenterology 23:147 doi: 10.1186/s12876-023-02776-6 |
[22] |
Zhao Q, Li X, Wu J, Zhang R, Chen S, et al. 2024. TRMT10C-mediated m7G modification of circFAM126A inhibits lung cancer growth by regulating cellular glycolysis. Cell Biology and Toxicology 40:78 doi: 10.1007/s10565-024-09918-w |
[23] |
Wang Q, Zhang Q, Huang Y, Zhang J. 2020. m1A regulator TRMT10C predicts poorer survival and contributes to malignant behavior in gynecological cancers. DNA and Cell Biology 39:1767−78 doi: 10.1089/dna.2020.5624 |
[24] |
Aminzadeh S, Vidali S, Sperl W, Kofler B, Feichtinger RG. 2015. Energy metabolism in neuroblastoma and Wilms tumor. Translational Pediatrics 4:20−32 doi: 10.3978/j.issn.2224-4336.2015.01.04 |
[25] |
Tasic L, Avramović N, Quintero M, Stanisic D, Martins LG, et al. 2022. A metabonomic view on Wilms tumor by high-resolution magic-angle spinning nuclear magnetic resonance spectroscopy. Diagnostics 12:157 doi: 10.3390/diagnostics12010157 |
[26] |
Capasso M, Montella A, Tirelli M, Maiorino T, Cantalupo S, et al. 2020. Genetic Predisposition to Solid Pediatric Cancers. Frontiers in Oncology 10:590033 doi: 10.3389/fonc.2020.590033 |
[27] |
Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN, et al. 2018. Pan-cancer genome and transcriptome analyses of 1, 699 paediatric leukaemias and solid tumours. Nature 555:371−76 doi: 10.1038/nature25795 |
[28] |
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, et al. 2013. Signatures of mutational processes in human cancer. Nature 500:415−21 doi: 10.1038/nature12477 |
[29] |
Liu Y, Zhu J, Wang X, Zhang W, Li Y, et al. 2024. TRMT10C gene polymorphisms confer hepatoblastoma susceptibility: evidence from a seven-center case-control study. Journal of Cancer 15:5396−402 doi: 10.7150/jca.98555 |
[30] |
Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, et al. 2017. International incidence of childhood cancer, 2001-10: a population-based registry study. The Lancet Oncology 18:719−31 doi: 10.1016/S1470-2045(17)30186-9 |
[31] |
Jörg M, Plehn JE, Kristen M, Lander M, Walz L, et al. 2024. N1-methylation of adenosine (m1A) in ND5 mRNA leads to complex I dysfunction in Alzheimer's disease. Molecular Psychiatry 29:1427−39 doi: 10.1038/s41380-024-02421-y |
[32] |
Hua RX, Liu J, Fu W, Zhu J, Zhang J, et al. 2020. ALKBH5 gene polymorphisms and Wilms tumor risk in Chinese children: a five-center case-control study. Journal of Clinical Laboratory Analysis 34:e23251 doi: 10.1002/jcla.23251 |
[33] |
Liao F, Hua RX, Jia X, Liao Y, Yuan L, et al. 2023. Association of m1A modification gene polymorphisms with glioma risk in Chinese children. MedComm – Oncology 2:e43 doi: 10.1002/mog2.43 |
[34] |
Chen YP, Liao YX, Zhuo ZJ, Yuan L, Lin HR, et al. 2022. Association between genetic polymorphisms of base excision repair pathway and glioma susceptibility in Chinese children. World Journal of Pediatrics 18:632−35 doi: 10.1007/s12519-022-00562-0 |
[35] |
Guan Q, Lin H, Hua W, Lin L, Liu J, et al. 2023. Variant rs8400 enhances ALKBH5 expression through disrupting miR-186 binding and promotes neuroblastoma progression. Chinese Journal of Cancer Research 35:140−62 doi: 10.21147/j.issn.1000-9604.2023.02.05 |
[36] |
Guan Q, Zhang X, Liu J, Zhou C, Zhu J, et al. 2024. ALKBH5 gene polymorphisms and risk of neuroblastoma in Chinese children from Jiangsu Province. Cancer Innovation 3:e103 doi: 10.1002/cai2.103 |