[1]

Suttitanawat P, Sruamsiri P, Sringarm K. 2012. Changes in cytokinins concentrations during induction period of longan cv. Daw in sand culture. Journal of Agricultural Technology 8:2353−62

[2]

Zheng S, Zeng L, Zhang J, Lin H, Deng C, et al. 2019. 70 years of fruit tree science research in new China—Longan. Journal of Fruit Science 36(10):1414−20

doi: 10.13925/j.cnki.gsxb.Z15
[3]

Huang S, Han D, Wang J, Guo D, Li J. 2021. Floral induction of longan (Dimocarpus longan) by potassium chlorate: application, mechanism, and future perspectives. Frontiers in Plant Science 12:670587

doi: 10.3389/fpls.2021.670587
[4]

Wang M. 2016. Study on physicochemical properties and antioxidant activity of Longan honey and Lychee honey. Thesis. Northwest University, China. pp. 52−78

[5]

Shahrajabian MH, Sun W, Cheng Q. 2019. Modern pharmacological actions of Longan fruits and their usages in traditional herbal remedies. Journal of Medicinal Plants Studies 7(4):179−85

[6]

Shahrajabian MH, Sun W. 2023. Potential roles of longan as a natural remedy with tremendous nutraceutical values. Current Nutrition & Food Science 19:888−95

doi: 10.2174/1573401319666230221111242
[7]

Li H, Lei T, Zhang J, Yan Y, Wang N, et al. 2021. Longan (Dimocarpus longan Lour.) Aril ameliorates cognitive impairment in AD mice induced by combination of D-gal/AlCl3 and an irregular diet via RAS/MEK/ERK signaling pathway. Journal of Ethnopharmacology 267:113612

doi: 10.1016/j.jep.2020.113612
[8]

Jain S, Prakash J. 2022. Off season flowering in mango (Mangifera indica L.). RASSA Journal of Science for Society 4:132−35

doi: 10.5958/2583-3715.2022.00021.1
[9]

Hau TV, Hieu TS. 2020. Induction of flowering in longan in the Mekong delta, Vietnam. Acta Horticulturae 1293:193−202

doi: 10.17660/actahortic.2020.1293.27
[10]

Potchanasin P, Sringarm K, Naphrom D, Bangerth KF. 2009. Floral induction in longan (Dimocarpus longan, Lour.) trees. IV. The essentiality of mature leaves for potassium chlorate induced floral induction and associated hormonal changes. Scientia Horticulturae 122:312−17

doi: 10.1016/j.scienta.2009.06.007
[11]

Jue D, Li Z, Tang J, Sang X, Guo Q. 2022. Identification of LEAFY gene in longan involved in flower induction. ResearchSquare Preprint

doi: 10.21203/rs.3.rs-2062707/v1
[12]

Li S, Chen Q. 2002. A review of differentiation and regulation of flower buds in longan. Subtropical Plant Science 31(4):68−72

doi: 10.3969/j.issn.1009-7791.2002.04.020
[13]

Qiu J, Wu D, Zhang H. 2001. A study on flower differentiation of 'Shixia' Longan. Journal of South China Agricultural University 22(1):27−30

doi: 10.3969/j.issn.1001-411X.2001.01.007
[14]

Deng C, Xu Q, Jiang J, Hu W, Zheng S, et al. 2022. A new Longan cultivar 'Chunxiang' with rich aroma. Acta Horticulturae Sinica 49:75−76

[15]

Deng C, Chen X, Xu Q, Jiang J, Zheng S, et al. 2022. A new Longan cultivar 'Fuxiang' with rich aroma. Acta Horticulturae Sinica 49:77−78

[16]

Qiu H, Hou Y, Qin X, Li H, Li D, et al. 2024. Comparison of the characteristics of growth, flowering and fruiting of tropical ecological Longan germplasm resources in Nanning. South China Fruits 53(3):111−17

doi: 10.13938/j.issn.1007-1431.20230556
[17]

Xu Q, Chen X, Hu W, Jiang J, Zheng S, et al. 2022. Report on Fuyuan, a large-size new variety of longan with high yield and quality. Journal of Fruit Science 39(12):2446−49

doi: 10.13925/j.cnki.gsxb.20220150
[18]

Lin Y, Min J, Lai R, Wu Z, Chen Y, et al. 2017. Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics. Gigascience 6:gix023

doi: 10.1093/gigascience/gix023
[19]

Wang B, Hu W, Fang Y, Feng X, Fang J, et al. 2022. Comparative analysis of the MADS-Box genes revealed their potential functions for flower and fruit development in Longan (Dimocarpus longan). Frontiers in Plant Science 12:813798

doi: 10.3389/fpls.2021.813798
[20]

Huang X, Liu H, Wu F, Wei W, Zeng Z, et al. 2024. Diversification of FT-like genes in the PEBP family contributes to the variation of flowering traits in Sapindaceae species. Molecular Horticulture 4:28

doi: 10.1186/s43897-024-00104-4
[21]

Heller WP, Ying Z, Davenport TL, Keith LM, Matsumoto TK. 2014. Identification of members of the dimocarpus Longan flowering Locus T gene family with divergent functions in flowering. Tropical Plant Biology 7:19−29

doi: 10.1007/s12042-013-9134-0
[22]

Qiu H, Zhu J, Ding F, Pan J, Qin X, et al. 2020. Cloning and expression analysis of FLOWERING LOCUS T (FT) homologous genes in four-season honey Longan. Southwest China Journal of Agricultural Sciences 33(2):224−32

doi: 10.16213/j.cnki.scjas.2020.2.002
[23]

Zhang Y, Peng Y, Fu Z. 2019. Functional study of longan TFL1 homologous genes overexpressed in Arabidopsis and Tobacco. Journal of Horticultural Science 46:1936−46

doi: 10.16420/j.issn.0513-353x.2018-0571
[24]

Cerise M, da Silveira Falavigna V, Rodríguez-Maroto G, Signol A, Severing E, et al. 2023. Two modes of gene regulation by TFL1 mediate its dual function in flowering time and shoot determinacy of Arabidopsis. Development 150(23):dev202089

doi: 10.1242/dev.202089
[25]

Zuo X, Wang S, Liu X, Tang T, Li Y, et al. 2024. FLOWERING LOCUS T1 and TERMINAL FLOWER1 regulatory networks mediate flowering initiation in apple. Plant Physiology 195:580−97

doi: 10.1093/plphys/kiae086
[26]

Huang F, Fu Z, Zeng L, Morley-Bunker M. 2017. Isolation and characterization of GI and FKF1 homologous genes in the subtropical fruit tree Dimocarpus longan. Molecular Breeding 37:90

doi: 10.1007/s11032-017-0691-z
[27]

Fu Z, Jia T, Peng Y, Saquib W, Zeng L. 2018. Cloning and function analysis of ELF4 homolog genes in dimocarpus longan. Acta Horticulturae Sinica 45:875−886

doi: 10.16420/j.issn.0513-353x.2017-0647
[28]

Jia T, Wei D, Meng S, Allan AC, Zeng L. 2014. Identification of regulatory genes implicated in continuous flowering of longan (Dimocarpus longan L.). PLoS ONE 9:e114568

doi: 10.1371/journal.pone.0114568
[29]

Jue D, Sang X, Liu L, Shu B, Wang Y, et al. 2018. Identification of WRKY gene family from dimocarpus longan and its expression analysis during flower induction and abiotic stress responses. International Journal of Molecular Sciences 19:2169

doi: 10.3390/ijms19082169
[30]

Waheed S, Liang F, Zhang M, He D, Zeng L. 2022. High-throughput sequencing reveals novel microRNAs involved in the continuous flowering trait of Longan (Dimocarpus longan Lour.). International Journal of Molecular Sciences 23:15565

doi: 10.3390/ijms232415565
[31]

Labrie ST, Wilkinson JQ, Crawford NM. 1991. Effect of chlorate treatment on nitrate reductase and nitrite reductase gene expression in Arabidopsis thaliana. Plant Physiology 97:873−79

doi: 10.1104/pp.97.3.873
[32]

Yan CR, Zhao ZN, Zhang ZW. 1998. Effects of chemical on introducing blossom of longan. Journal of the Chinese Society for Horticultural Science 44:517−18

[33]

Nakata M, Sugiyama N, Pankasemsuk T. 2005. Problems Confronted After the by Longan Adoption Growers in Northern Chlorate Thailand After the Adotion of of Potassium. Japanese Journal of Tropical Agriculture 49:140−146

[34]

Jaroenkit T, Manochai P. 2020. Current practices and research in off-season longan production in Thailand. Acta Horticulturae 1293:185−92

doi: 10.17660/actahortic.2020.1293.26
[35]

Hung NQ, Hung VV, Hong NTB, Bay DTB. 2020. Current status of longan production in Vietnam. Acta Horticulturae 1293:15−20

doi: 10.17660/actahortic.2020.1293.3
[36]

Matsumoto TK. 2005. Exploring the mechanisms and alternatives to potassium chlorate induced flowering in Longan. Fifteenth Annual International Tropical Fruit Conference Proceedings. pp. 51−59

[37]

South Subtropical Crops Center MoAaRA. 2024. Report on the development of China's Litchi and Longan industries. Chinese Journal of Tropical Agriculture 118:1−7

[38]

Guo D, Han D, Huang S, Wang J, Lv X, et al. 2023. Analysis of Longan production situation in Guangdong in 2022. Chinese Journal of Tropical Agriculture 1:5−13

[39]

Manochai P, Sruamsiri P, Wiriya-Alongkorn W, Naphrom D, Hegele M, et al. 2005. Year around off season flower induction in longan (Dimocarpus longan, Lour.) trees by KClO3 applications: potentials and problems. Scientia Horticulturae 104:379−90

doi: 10.1016/j.scienta.2005.01.004
[40]

Wang G. 2008. Off-Season longan production practices and exploration. China Tropical Agriculture 3:60−61

[41]

Ongprasert S, Wiriya-Alongkorn W, Spreer W. 2010. Degradation and movement of chlorate in longan plantations. Acta Horticulturae 863:367−74

doi: 10.17660/actahortic.2010.863.49
[42]

Li L. 2020. Effects of potassium chlorate treatment on flowering and fruit setting of Shixia Longan and expression of genes related to oxidative stress. Thesis. Guangxi University, China. pp. 35−56

[43]

Wang W. 2010. Study on the induction of off-season flowering in Longan and its relationship with endogenous hormones and other growth substances. Thesis. Fujian Agriculture and Forestry University, China. pp. 128−35

[44]

Chang Q, Su M, Wu S, Wang W, Li H. 2015. Effects of KClO3 on hormones within leaves and apical buds during floral induction phase in Longan. Journal of Horticultural Science 42(2):332−40

doi: 10.16420/j.issn.0513-353x.2014-0828
[45]

Lai R, Lin J, Su M, Liu Z, Xie Z. 2011. Changes in endogenous hormone levels and root activity of longan roots induced by Potassium chlorate. Chinese Journal of Tropical Crops 32(2):225−228

doi: 10.3969/j.issn.1000-2561.2011.02.008
[46]

Hong J, Chen X, Li S, Zhang L, Yang Z. 2015. The impact of H2O2 and NO on FT gene expression and floral bud formation in Longan. Chinese Journal of Tropical Crops 36(11):2002−6

[47]

Manochai P. 1999. Effect of potassium chlorate on flowering of longan (Dimocarpus longan Lour.)National Research Council of Thailand 1:1−14

[48]

Potchanasin P, Sringarm K, Sruamsiri P, Bangerth KF. 2009. Floral induction (FI) in longan (Dimocarpus longan, Lour.) trees: Part I. Low temperature and potassium chlorate effects on FI and hormonal changes exerted in terminal buds and sub-apical tissue. Scientia Horticulturae 122:288−94

doi: 10.1016/j.scienta.2009.06.008
[49]

Aung PP, Traisuwan N, Chintakovid W, Tulyananda T, Pichakum A. 2023. Bloom performances during rainy season of off-season longan (Dimocarpus longan Lour. 'Phuang Thong') grown at Samut Sakhon Province, Thailand. Natural and Life Sciences Communications 22:4−4

doi: 10.12982/nlsc.2023.069
[50]

Pan J, Yang Y, Bai X, Huang S, Wang J, et al. 2019. Effects of different application methods of Potassium chlorate on flowering regulation and fruit setting of 'Guiguan Early' longan. South China Fruits 48(2):40−44

doi: 10.13938/j.issn.1007-1431.20180677
[51]

Wang Y. 2023. Study on the mechanism of potassium chlorate, growth regulators, and different winter watering levels regulating flowering in Longan. Thesis. Guangxi University, China. pp. 35−48

[52]

Lu J, Yang R, Wang H, Huang X. 2017. Stress effects of chlorate on longan (Dimocarpus longan Lour.) trees: changes in nitrogen and carbon nutrition. Horticultural Plant Journal 3:237−46

doi: 10.1016/j.hpj.2017.12.003
[53]

Sringarm K, Potchanasin P, Naphrom D, Bangerth KF. 2009. Floral induction (FI) in longan (Dimocarpus longan, Lour.) trees. III: effect of shading the trees on potassium chlorate induced FI and resulting hormonal changes in leaves and shoots. Scientia Horticulturae 122:301−11

doi: 10.1016/j.scienta.2009.06.006
[54]

Sritontip C, Tiyayon P, Sringam K, Pantachod S, Naphrom D, et al. 2013. Influence of water regimes and potassium chlorate on floral induction, leaf photosynthesis and leaf water potential in Longan. Journal of Agricultural Science 5:211−20

doi: 10.5539/jas.v5n6p211
[55]

Li S. 2003. Study on potassium chlorate induction of flowering and physiological and biochemical changes in longan (Dimocarpus longan Lour.). Thesis. Fujian Agriculture and Forestry University, China. pp. 21−28

[56]

Chen Y. 2004. Study on the effect and mechanism of potassium chlorate on off-season flowering of dimocarpus longan. Thesis. Guangxi University, China. pp. 25−35

[57]

Lu G. 2005. Study on the effect and mechanism of potassium chlorate induced off-season flowering in longan. Thesis. Guangxi University, China. pp. 65−78

[58]

Tian S. 2016. Effects of irrigation and fertilization with regulators on the growth and development of longan. Thesis. Guangxi University, China pp. 32−43

[59]

Sritontip C, Khaosumain Y, Changjaraja S, Poruksa R. 2005. Effects of potassium chlorate, sodium hypochlorite and calcium hypochlorite on flowering and some physiological changes in 'DO' Longan. Acta Horticulturae 665:269−74

doi: 10.17660/ACTAHORTIC.2005.665.31
[60]

Sutisa C, Aphaporn C, Worachart M, Songsak T. 2016. Effect of timing for NPK fertilizer application on flowering and yield of Longan (Dimocarpus longan Lour.). Journal of Agricultural Technology 12:1309−19

[61]

Lu J. 2005. Physiological Study on the Biological Effects of Potassium Chlorate on Longan. Thesis. South China Agricultural University, China. pp. 45−67

[62]

Garrido Y, Marín A, Tudela JA, Truchado P, Allende A, et al. 2020. Chlorate accumulation in commercial lettuce cultivated in open field and irrigated with reclaimed water. Food Control 114:107283

doi: 10.1016/j.foodcont.2020.107283
[63]

Li Z, Qiu Y, Yuan P, Ou L, Xiang X, et al. 2009. Preliminary analysis of the environmental impact of potassium chlorate application for flower induction in longan orchards. Symposium on the Development of the Litchi and Longan Industry between Mainland China and Taiwan & the 20 th Guangdong Litchi and Longan Science and Technology Cooperation Symposium. pp. 144−48.

[64]

Ongprasert S, Sutikoolabud P, Aumtong S. 2002. The impact of application of chlorates in longan plantations on the environment and the remedy. Proceedings of the 17 th World Congress of Soil Science, 14−21 August 2002, Thailand. paper no. 1191. pp. 1−10

[65]

Baubhom T, Chatsantiprapa K. 2019. Risk assessment for ingestion of off-season longan stimulated by potassium chlorate. The Thai Journal of Pharmaceutical Sciences 43:96−104

doi: 10.56808/3027-7922.2426
[66]

Matsumoto TK. 2006. Genes uniquely expressed in vegetative and potassium chlorate induced floral buds of Dimocarpus longan. Plant Science 170:500−10

doi: 10.1016/j.plantsci.2005.09.016
[67]

Yang Z, Chen X, Zhang L, Hong J, Chen Y, et al. 2015. Discussion on the relationship between flowering of Longan and oxidative damage. Chinese Journal of Tropical Crops 36(1):120−124

doi: 10.3969/j.issn.1000-2561.2015.01.020
[68]

Winterhagen P, Hegele M, Tiyayon P, Wünsche JN. 2020. Cytokinin accumulation and flowering gene expression are orchestrated for floral meristem development in longan (Dimocarpus longan Lour.) after chemical flower induction. Scientia Horticulturae 270:109467

doi: 10.1016/j.scienta.2020.109467
[69]

Wei Z. 2012. Effects of potassium chlorate on endogenous hormones and root activity of Longan (Dimocarpus longan Lour. cv. Songfengben). Modern Horticulture 66(16):9

doi: 10.14051/j.cnki.xdyy.2012.16.104
[70]

Sritontip C, Tiyayon P, Naphrom D, Ruamrungsri S, Sruamsiri P. 2012. Changes in photosynthesis characteristic and flowering in Longan as affected by water regimes and potassium chlorate. Journal of Agricultutal Research & Exrension 29:15−24

[71]

Li J, Guo D, Yuan P. 2019. Analysis of the flower-inducing effect of potassium chlorate on rejuvenated pruned Longan. Guangdong Agricultural Sciences 40(22):55−58

doi: 10.16768/j.issn.1004-874x.2013.22.044
[72]

Chang Q. 2010. Study on the Induction of Off-season Flowering in Longan and Its Relationship with Carbon and Nitrogen Nutrition. Thesis. Fujian Agriculture and Forestry University, China. pp. 25−27

[73]

Huang XM, Lu JM, Wang HC, Zhang CL, Xie L, et al. 2006. Nitrate reduces the detrimental effect of potassium chlorate on longan (Dimocarpus longan Lour.) trees. Scientia Horticulturae 108:51−56

doi: 10.1016/j.scienta.2006.01.015
[74]

Ouyang R, Liu H, Li P, Wang H, Hu G. 2005. Physiological Responses of 'Shixia' Longan to Potassium Chlorate Stress. Journal of Jiangxi Agricultural University 27:34−38

doi: 10.3969/j.issn.1000-2286.2005.01.008
[75]

Suthon W, Lee C, Yang Y. 2012. Effects of KClO3 and girdling on off-season flowering in Longan (Dimocarpus longan Lour.). Horticulture NCHU 37:1−12

[76]

Li S, Hong J, Zhang L, Yang Z. 2013. Study on carbon nutrition difference in flowering of on-season and off-season longan. Guangdong Agricultural Sciences 40(24):43−45

doi: 10.16768/j.issn.1004-874x.2013.24.033
[77]

Bao S, Hua C, Shen L, Yu H. 2020. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology 62:118−31

doi: 10.1111/jipb.12892
[78]

Hu G, Wang K, Huang B, Mila I, Frasse P, et al. 2022. The auxin-responsive transcription factor SlDOF9 regulates inflorescence and flower development in tomato. Nature Plants 8:419−33

doi: 10.1038/s41477-022-01121-1
[79]

Werner S, Bartrina I, Schmülling T. 2021. Cytokinin regulates vegetative phase change in Arabidopsis thaliana through the miR172/TOE1-TOE2 module. Nature Communications 12:5816

doi: 10.1038/s41467-021-26088-z
[80]

Ye K. 2008. Study on the physiological and biochemical changes and differential gene expression during potassium chlorate-induced off-season flowering in Longan. Thesis. Guangxi University, China. pp. 18−21

[81]

Hegele M, Manochai P, Naphrom D, Sruamsiri P, Wünsche J. 2008. Flowering in longan (Dimocarpus longan L.) induced by hormonal changes following KClO3 applications. European Journal of Horticultural Science 73(2):49-54

[82]

Yang Z, Huang X, Chen Y, Hong J, Li S, et al. 2019. Changes in endogenous hormone levels during flower bud differentiation of on-season and off-season Longan. Journal of Anhui Agricultural Sciences 47:47−50

doi: 10.3969/j.issn.0517-6611.2019.09.015
[83]

Tiyayon P, Sritontip C, Hegele M, Manochai P, Sruamsiri P, et al. 2010. Effects of girdling and defoliation on hormonal changes during flower induction in longan (Dimocarpus longan Lour). Acta Horticulturae 863:329−34

doi: 10.17660/actahortic.2010.863.43
[84]

Hegele M, Sritontip C, Chattrakul A, Tiyayon P, Naphrom D, et al. 2010. Hormonal control of flower induction in litchi and longan. Acta Horticulturae 863:305−14

doi: 10.17660/actahortic.2010.863.40
[85]

Huang S, Qiao Y, Lv X, Li J, Han D, et al. 2022. Transcriptome sequencing and DEG analysis in different developmental stages of floral buds induced by potassium chlorate in Dimocarpus longan. Plant Biotechnology 39:259−70

doi: 10.5511/plantbiotechnology.22.0526a
[86]

Li S, Chen H, Hong J, Ye X, Wang J, et al. 2023. Chlorate-induced molecular floral transition revealed by transcriptomes. Open Life Sciences 18:20220612

doi: 10.1515/biol-2022-0612
[87]

Wang b. 2022. Indentification of MADS-box families and the molecular mechanism of flower induction in Longan (Dimocarpus longan). Thesis. Fujian Agriculture and Forestry University, China. pp. 24−65

[88]

Chen Z, Li Z. 2022. Adaptation and integration of environmental cues to internal flowering network in Arabidopsis thaliana. Reproduction and Breeding 2:133−37

doi: 10.1016/j.repbre.2022.11.003
[89]

Winterhagen P, Tiyayon P, Hegele M, Wünsche JN. 2017. Expression of flowering genes in the subtropical fruit tree Dimocarpus longan. Acta Horticulturae 1178:13−16

doi: 10.17660/actahortic.2017.1178.2
[90]

Hofstra JJ. 1977. Chlorate toxicity and nitrate reductase activity in tomato plants. Physiologia Plantarum 41:65−69

doi: 10.1111/j.1399-3054.1977.tb01524.x
[91]

Thorell HD, Stenklo K, Karlsson J, Nilsson T. 2003. A gene cluster for chlorate metabolism in Ideonella dechloratans. Applied and Environmental Microbiology 69:5585−92

doi: 10.1128/AEM.69.9.5585-5592.2003
[92]

Matsumoto TK, Nagao MA, Mackey B. 2007. Off-season flower induction of longan with potassium chlorate, sodium chlorite, and sodium hypochlorite. HortTechnology 17:296−300

doi: 10.21273/horttech.17.3.296
[93]

Lejay L, Gojon A. 2018. Root nitrate uptake. In Advances in Botanical Research, ed. Maurel C. vol. 87. UK: Academic Press. pp. 139−69. doi: 10.1016/bs.abr.2018.09.009

[94]

Guy M, Zabala G, Filner P. 1988. The kinetics of chlorate uptake by XD tobacco cells. Plant Physiology 86:817−21

doi: 10.1104/pp.86.3.817
[95]

Chodera AJ, Briskin DP. 1990. Chlorate transport in isolated tonoplast vesicles from red beet (Beta vulgaris L.) storage tissue. Plant Science 67:151−60

doi: 10.1016/0168-9452(90)90238-J
[96]

Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, et al. 2014. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science 19:5−9

doi: 10.1016/j.tplants.2013.08.008
[97]

Xia X, Fan X, Wei J, Feng H, Qu H, et al. 2015. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. Journal of Experimental Botany 66:317−31

doi: 10.1093/jxb/eru425
[98]

Fan X, Feng H, Tan Y, Xu Y, Miao Q, et al. 2016. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. Journal of Integrative Plant Biology 58:590−99

doi: 10.1111/jipb.12382
[99]

Muños S, Cazettes C, Fizames C, Gaymard F, Tillard P, et al. 2004. Transcript profiling in the chl1-5 mutant of arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. The Plant Cell 16:2433−47

doi: 10.1105/tpc.104.024380
[100]

Ho CH, Lin SH, Hu HC, Tsay YF. 2009. CHL1 functions as a nitrate sensor in plants. Cell 138:1184−94

doi: 10.1016/j.cell.2009.07.004
[101]

Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, et al. 2008. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. The Plant Cell 20:2514−28

doi: 10.1105/tpc.108.060244
[102]

Zhang J, Rengel Z, Yang Y, Chen Q. 2017. The role of the plasma membrane H+-ATPase in plant responses to aluminum toxicity. Frontiers in Plant Science 8:1757

doi: 10.3389/fpls.2017.01757
[103]

Kathare PK, Dharmasiri S, Vincill ED, Routray P, Ahmad I, et al. 2020. Arabidopsis PIC30 encodes a major facilitator superfamily transporter responsible for the uptake of picolinate herbicides. Plant Journal 102:18−33

doi: 10.1111/tpj.14608
[104]

Kabange NR, Park SY, Shin D, Lee SM, Jo SM, et al. 2020. Identification of a novel qtl for chlorate resistance in rice (Oryza sativa L.). Agriculture (Switzerland) 10(8):360

doi: 10.3390/agriculture10080360
[105]

Zhang Z, Chu C. 2020. Nitrogen-Use divergence between Indica and Japonica Rice: variation at nitrate assimilation. Molecular Plant 13:6−7

doi: 10.1016/j.molp.2019.11.011
[106]

Karunarathne SD, Han Y, Zhang XQ, Dang VH, Angessa TT, et al. 2021. Using chlorate as an analogue to nitrate to identify candidate genes for nitrogen use efficiency in barley. Molecular Breeding 41:47

doi: 10.1007/s11032-021-01239-8
[107]

Mészáros A, Pauk J. 2002. Chlorate resistance as a tool to study the effect of nitrate reductase antisense gene in wheat. Cereal Research Communications 30:245−252

doi: 10.1007/BF03543415
[108]

Kabange NR, Park SY, Lee JY, Shin D, Lee SM, et al. 2021. New insights into the transcriptional regulation of genes involved in the nitrogen use efficiency under potassium chlorate in rice (Oryza sativa L.). International Journal of Molecular Sciences 22:2192

doi: 10.3390/ijms22042192
[109]

Jamieson F, Ji Z, Belfield EJ, Ding ZJ, Zheng SJ. 2022. Ethylene signaling modulates Arabidopsis thaliana nitrate metabolism. Planta 255:94

doi: 10.1007/s00425-021-03785-z
[110]

Guo Y, Wu Q, Xie Z, Yu B, Zeng R, et al. 2020. OsFPFL4 is Involved in the root and flower development by affecting auxin levels and ROS accumulation in rice (Oryza sativa). Rice 13:2

doi: 10.1186/s12284-019-0364-0
[111]

Zhu J, Du D, Li Y, Zhang Y, Hu WL, et al. 2023. Isolation of three MiDi19-4 genes from mango, the ectopic expression of which confers early flowering and enhances stress tolerance in transgenic Arabidopsis. Planta 258:14

doi: 10.1007/s00425-023-04172-6
[112]

He Y, Tang RH, Hao Y, Stevens RD, Cook CW, et al. 2004. Nitric oxide represses the Arabidopsis floral transition. Science 305:1968−71

doi: 10.1126/science.1098837
[113]

Chai L, Wang JM, Fan ZY, Liu ZB, Wen GQ, et al. 2014. Regulation of the flowering time of Arabidopsis thaliana by thylakoid ascorbate peroxidase. African Journal of Biotechnology 11:7151−57

[114]

Liu WW, Kim HJ, Chen HB, Lu XY, Zhou BY. 2013. Identification of MV-generated ROS responsive EST clones in floral buds of Litchi chinensis Sonn. Plant Cell Reports 32:1361−72

doi: 10.1007/s00299-013-1448-8
[115]

Lu X, Yu S, Lü P, Chen H, Zhong S, et al. 2020. Genome-wide transcriptomic analysis reveals a regulatory network of oxidative stress-induced flowering signals produced in litchi leaves. Genes 11:324

doi: 10.3390/genes11030324
[116]

Yang Z, Xu Z, Zhang L, Hong J, Chen Y, et al. 2016. Effects of H2O2 and NO on flowering and AP1 gene expression in off-season Longan. South China Fruits 45:5−5

doi: 10.13938/j.issn.1007-1431.20150275
[117]

Kalwani M, Chakdar H, Srivastava A, Pabbi S, Shukla P. 2022. Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere 287:132107

doi: 10.1016/j.chemosphere.2021.132107
[118]

Li W, Fu W, Hou J, Yang Y, Yin T. 2023. Evolution of plant sex and molecular mechanisms underlying plantssex separation. Forestry Research 3:1

doi: 10.48130/fr-2023-0001
[119]

Zhang MX, Zhao LY, He YY, Hu JP, Hu GW, et al. 2024. Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.). Bioresource Technology 391:129987

doi: 10.1016/j.biortech.2023.129987