[1]

Kosyachenko LA, Mathew X, Paulson PD, Lytvynenko VY, Maslyanchuk OL. 2014. Optical and recombination losses in thin-film Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells 130:291−302

doi: 10.1016/j.solmat.2014.07.019
[2]

Chatzisideris MD, Espinosa N, Laurent A, Krebs FC. 2016. Ecodesign perspectives of thin-film photovoltaic technologies: a review of life cycle assessment studies. Solar Energy Materials and Solar Cells 156:2−10

doi: 10.1016/j.solmat.2016.05.048
[3]

Xu M, Bearda T, Sivaramakrishnan Radhakrishnan H, Kiran Jonnak S, Hasan M, et al. 2017. Silicon heterojunction interdigitated back-contact solar cells bonded to glass with efficiency >21%. Solar Energy Materials and Solar Cells 165:82−87

doi: 10.1016/j.solmat.2017.02.032
[4]

Medina-Montes MI, Vieyra-Brito O, Mathews NR, Mathew X. 2018. Development of sputtered CuSbS2 thin films grown by sequential deposition of binary sulfides. Semiconductor Science and Technology 33:055004

doi: 10.1088/1361-6641/aab815
[5]

Powalla M, Paetel S, Ahlswede E, Wuerz R, Wessendorf CD, et al. 2018. Thin-film solar cells exceeding 22% solar cell efficiency: an overview on CdTe-, Cu(In,Ga)Se2-, and perovskite-based materials. Applied Physics Reviews 5:041602

doi: 10.1063/1.5061809
[6]

Xu M, Bearda T, Filipič M, Radhakrishnan HS, Gordon I, et al. 2018. Simple emitter patterning of silicon heterojunction interdigitated back-contact solar cells using damage-free laser ablation. Solar Energy Materials and Solar Cells 186:78−83

doi: 10.1016/j.solmat.2018.06.027
[7]

Xu M, Wang C, Bearda T, Simoen E, Radhakrishnan HS, et al. 2018. Dry passivation process for silicon heterojunction solar cells using hydrogen plasma treatment followed by in situ a-Si:H deposition. IEEE Journal of Photovoltaics 8:1539−45

doi: 10.1109/JPHOTOV.2018.2871329
[8]

Cho J, Melskens J, Debucquoy M, Recamán Payo M, Jambaldinni S, et al. 2018. Passivating electron-selective contacts for silicon solar cells based on an a-Si:H/TiO x stack and a low work function metal. Progress in Photovoltaics: Research and Applications 26:835−45

doi: 10.1002/pip.3023
[9]

Bouich A, Hartiti B, Ullah S, Ullah H, Touhami ME, et al. 2019. Experimental, theoretical, and numerical simulation of the performance of CuInxGa(1-x)S2-based solar cells. Optik 183:137−47

doi: 10.1016/j.ijleo.2019.02.067
[10]

Benzetta AE, Abderrezek M, Djeghlal ME. 2020. Comparative study on Cu2ZnSn(S,Se)4 based thin film solar cell performances by adding various back surface field (BSF) layers. Chinese Journal of Physics 63:231−39

doi: 10.1016/j.cjph.2019.11.020
[11]

Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, et al. 2019. Surface passivation of perovskite film for efficient solar cells. Nature Photonics 13:460−66

doi: 10.1038/s41566-019-0398-2
[12]

Lin L, Jiang L, Li P, Fan B, Qiu Y, et al. 2019. Simulation of optimum band structure of HTM-free perovskite solar cells based on ZnO electron transporting layer. Materials Science in Semiconductor Processing 90:1−6

doi: 10.1016/j.mssp.2018.10.003
[13]

Cui J, Meng F, Zhang H, Cao K, Yuan H, et al. 2014. CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide. ACS Applied Materials & Interfaces 6:22862−70

doi: 10.1021/am507108u
[14]

Rahul, Singh PK, Singh R, Singh V, Tomar SK, et al. 2017. Effect of crystal and powder of CH3NH3I on the CH3NH3PbI3 based perovskite sensitized solar cell. Materials Research Bulletin 89:292−96

doi: 10.1016/j.materresbull.2017.01.035
[15]

Moyez SA, Roy S. 2018. Dual-step thermal engineering technique: a new approach for fabrication of efficient CH3NH3PbI3-based perovskite solar cell in open air condition. Solar Energy Materials and Solar Cells 185:145−52

doi: 10.1016/j.solmat.2018.05.027
[16]

Jamal MS, Shahahmadi SA, Abdul Wadi MA, Chelvanathan P, Asim N, et al. 2019. Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik 182:1204−10

doi: 10.1016/j.ijleo.2018.12.163
[17]

Rai S, Pandey BK, Dwivedi DK. 2020. Modeling of highly efficient and low cost CH3NH3Pb(I1- xClx)3 based perovskite solar cell by numerical simulation. Optical Materials 100:109631

doi: 10.1016/j.optmat.2019.109631
[18]

Babayigit A, Ethirajan A, Muller M, Conings B. 2016. Toxicity of organometal halide perovskite solar cells. Nature Materials 15:247−51

doi: 10.1038/nmat4572
[19]

Jena AK, Kulkarni A, Miyasaka T. 2019. Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews 119:3036−103

doi: 10.1021/acs.chemrev.8b00539
[20]

Wang R, Mujahid M, Duan Y, Wang ZK, Xue J, et al. 2019. A review of perovskites solar cell stability. Advanced Functional Materials 29:1808843

doi: 10.1002/adfm.201808843
[21]

Sunny A, Rahman S, Khatun MM, Al Ahmed SR. 2021. Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D. AIP Advances 11:065102

doi: 10.1063/5.0049646
[22]

Gan Y, Bi X, Liu Y, Qin B, Li Q, et al. 2020. Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies 13:5907

doi: 10.3390/en13225907
[23]

Lakhdar N, Hima A. 2020. Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Optical Materials 99:109517

doi: 10.1016/j.optmat.2019.109517
[24]

Salah MM, Hassan KM, Abouelatta M, Shaker A. 2019. A comparative study of different ETMs in perovskite solar cell with inorganic copper iodide as HTM. Optik 178:958−63

doi: 10.1016/j.ijleo.2018.10.052
[25]

Rai N, Rai S, Singh PK, Lohia P, Dwivedi DK. 2020. Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. Journal of Materials Science: Materials in Electronics 31:16269−80

doi: 10.1007/s10854-020-04175-z
[26]

Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, et al. 2014. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science 7:3061−68

doi: 10.1039/C4EE01076K
[27]

Deepthi Jayan K, Sebastian V. 2021. Modelling and comparative performance analysis of tin based mixed halide perovskite solar cells with IGZO and CuO as charge transport layers. International Journal of Energy Research 45:16618−32

doi: 10.1002/er.6909
[28]

Tang J, Chen Y, Xu Z, Li X, Liu M, et al. 2024. Composites electron transport layer of PVA-regulated SnO2 for high-efficiency stable perovskite solar cells. Journal of Alloys and Compounds 1004:175939

doi: 10.1016/j.jallcom.2024.175939
[29]

Chen P, Pan W, Wang S, Zheng Q, Tong A, et al. 2024. Enhancing efficiency and stability of perovskite solar cells through methoxyamine hydrochloride modified SnO2 electron transport layer. Chemical Engineering Journal 488:151162

doi: 10.1016/j.cej.2024.151162
[30]

Chen L, Li X, Zhang N, Yu L, Liu Z, et al. 2024. Non-ionic polymeric polyacrylamide (PAM) modified SnO2 electron transport layer for high-efficiency perovskite solar cells. Solar Energy Materials and Solar Cells 272:112907

doi: 10.1016/j.solmat.2024.112907
[31]

Wang Z, Zhou Y, Cao J, Lu Y, Liu Y, et al. 2024. Multifunctional buried interface modification of SnO2-based planar perovskite solar cells via phosphorus hetero-phenanthrene flame retardants. Ceramics International 50:28768−74

doi: 10.1016/j.ceramint.2024.05.187
[32]

Jiang L, Li Q, Li B, Guo S, Li S, et al. 2024. Efficient and stable perovskite solar cells via oxalic acid doped SnO2 nanocrystals with surface-defect passivation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 702:135052

doi: 10.1016/j.colsurfa.2024.135052
[33]

Li Y, Zhao C, Yang X, Fan L, Wei M, et al. 2023. Zirconium acetate stabilized tin dioxide colloidal quantum dots as multifunctional electron transporting layer for efficient and stable perovskite solar cells. Surfaces and Interfaces 43:103546

doi: 10.1016/j.surfin.2023.103546
[34]

Deepika, Singh A, Verma UK, Ameen S. 2024. Optimization of lead-free materials-based perovskite solar cell using SCAPS-1D simulation. Journal of Physics and Chemistry of Solids 186:111817

doi: 10.1016/j.jpcs.2023.111817
[35]

Bhattarai S, Borah D, Rout J, Pandey R, Madan J, et al. 2023. Designing an efficient lead-free perovskite solar cell with green-synthesized CuCrO2 and CeO2 as carrier transport materials. RSC Advances 13:34693−702

doi: 10.1039/d3ra06722j
[36]

Ngulezhu T, Abdulkarim AS, Rawat S, Singh RC, Singh PK, et al. 2024. Stable lead free perovskite solar cells based on bismuth doped perovskite materials. Chemical Physics Impact 9:100689

doi: 10.1016/j.chphi.2024.100689
[37]

Reza MS, Rahman MF, Reza MS, Islam MR, Rehman UU, et al. 2024. Rubidium based new lead free high performance perovskite solar cells with SnS2 as an electron transport layer. Materials Today Communications 39:108714

doi: 10.1016/j.mtcomm.2024.108714
[38]

Khan F, Fatima Rasheed J, Ahmad V, Alshahrani T, Ali SK, et al. 2024. Studies on the performance of FASnI3: Zn2+-based lead-free perovskite solar cells: a numerical simulation. Optik 306:171810

doi: 10.1016/j.ijleo.2024.171810
[39]

Ishraq MH, Tarekuzzaman M, Modak JK, Ahmad S, Rasheduzzaman M, et al. 2024. Investigating novel perovskites of lead-free flexible solar cell CH3NH3BiI3 and their photovoltaic performance with efficiency over 26%. Materials Science and Engineering: B 308:117622

doi: 10.1016/j.mseb.2024.117622
[40]

Khan NN, Fareed M, Mirza SH, Zulfiqar M. 2024. Lead-free perovskite solar cell based on methyl ammonium tin iodide: possible power conversion efficiency enhancement by device simulation. Heliyon 10:e27321

doi: 10.1016/j.heliyon.2024.e27321
[41]

Islam M, Ahmed T, Shamim SUD, Piya AA, Basak A. 2024. Thickness dependent numerical investigations of lead free perovskite/CIGS bilayer solar cell using SCAPS-1D. Chemistry of Inorganic Materials 2:100034

doi: 10.1016/j.cinorg.2024.100034
[42]

Liu W, Raza H, Hu X, Liu S, Liu Z, et al. 2023. Key bottlenecks and distinct contradictions in fast commercialization of perovskite solar cells. Materials Futures 2:012103

doi: 10.1088/2752-5724/acba35
[43]

Aliaghayee M. 2023. Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D. Journal of Electronic Materials 52:2475−91

doi: 10.1007/s11664-022-10203-x
[44]

Ali NM, Rafat NH. 2017. Modeling and simulation of nanorods photovoltaic solar cells: a review. Renewable and Sustainable Energy Reviews 68:212−20

doi: 10.1016/j.rser.2016.09.114
[45]

Burgelman M, Nollet P, Degrave S. 2000. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361−362:527−32

doi: 10.1016/s0040-6090(99)00825-1
[46]

Sharma S, Kumar Sharma A. 2020. Improved Cuprous Iodide and Tin Halide based Perovskite solar cell design for better Fill Factor and power conversion efficiency. Materials Today: Proceedings 28:1955−61

doi: 10.1016/j.matpr.2020.05.556
[47]

Sarker S, Islam MT, Rauf A, Al Jame H, Ahsan S, et al. 2022. A simulation based incremental study of stable perovskite-on-perovskite tandem solar device utilizing non-toxic tin and germanium perovskite. Materials Today Communications 32:103881

doi: 10.1016/j.mtcomm.2022.103881
[48]

Singh AK, Srivastava S, Mahapatra A, Baral JK, Pradhan B. 2021. Performance optimization of lead free-MASnI3 based solar cell with 27% efficiency by numerical simulation. Optical Materials 117:111193

doi: 10.1016/j.optmat.2021.111193
[49]

Barbé J, Tietze ML, Neophytou M, Murali B, Alarousu E, et al. 2017. Amorphous tin oxide as a low-temperature-processed electron-transport layer for organic and hybrid perovskite solar cells. ACS Applied Materials & Interfaces 9:11828−36

doi: 10.1021/acsami.6b13675
[50]

Kim H, Lim KG, Lee TW. 2016. Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy & Environmental Science 9:12−30

doi: 10.1039/c5ee02194d
[51]

Tanaka K, Minemoto T, Takakura H. 2009. Analysis of heterointerface recombination by Zn1– xMg xO for window layer of Cu(In,Ga)Se2 solar cells. Solar Energy 83:477−79

doi: 10.1016/j.solener.2008.09.003
[52]

Turcu M, Rau U. 2003. Fermi level pinning at CdS/Cu(In,Ga)(Se,S)2 interfaces: effect of chalcopyrite alloy composition. Journal of Physics and Chemistry of Solids 64:1591−95

doi: 10.1016/s0022-3697(03)00137-9
[53]

Minemoto T, Murata M. 2015. Theoretical analysis on effect of band offsets in perovskite solar cells. Solar Energy Materials and Solar Cells 133:8−14

doi: 10.1016/j.solmat.2014.10.036
[54]

Singh P, Ravindra NM. 2012. Temperature dependence of solar cell performance—an analysis. Solar Energy Materials and Solar Cells 101:36−45

doi: 10.1016/j.solmat.2012.02.019
[55]

Al Ahmed SR, Sunny A, Rahman S. 2021. Performance enhancement of Sb2Se3 solar cell using a back surface field layer: a numerical simulation approach. Solar Energy Materials and Solar Cells 221:110919

doi: 10.1016/j.solmat.2020.110919
[56]

Devi N, Parrey KA, Aziz A, Datta S. 2018. Numerical simulations of perovskite thin-film solar cells using a CdS hole blocking layer. Journal of Vacuum Science & Technology B 36:04G105

doi: 10.1116/1.5026163