[1] |
Vardhan KH, Kumar PS, Panda RC. 2019. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids 290:111197 doi: 10.1016/J.MOLLIQ.2019.111197 |
[2] |
Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, et al. 2021. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology and Innovation 22:101504 doi: 10.1016/J.ETI.2021.101504 |
[3] |
Kapahi M, Sachdeva S. 2019. Bioremediation options for heavy metal pollution. Journal of Health and Pollution 9(24):191203 doi: 10.5696/2156-9614-9.24.191203 |
[4] |
Briffa J, Sinagra E, Blundell R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691 doi: 10.1016/j.heliyon.2020.e04691 |
[5] |
Afzaal M, Hameed S, Liaqat I, Ali Khan AA, Abdul-Manan H, et al. 2022. Heavy metals contamination in water, sediments and fish of freshwater ecosystems in Pakistan. Water Practice and Technology 17(5):1253−72 doi: 10.2166/WPT.2022.039 |
[6] |
Muhammad M, Khan S, Shehzadi SA, Gul Z, Al-Saidi HM et al. 2022. Recent advances in colorimetric and fluorescent chemosensors based on thiourea derivatives for metallic cations: A review. Dyes and Pigments 205:110477 doi: 10.1016/j.dyepig.2022.110477 |
[7] |
El-Gendi H, Saleh AK, Badierah R, Redwan EM, El-Maradny YA, et al. 2021. A comprehensive insight into fungal enzymes: structure, classification, and their role in mankind's challenges. Journal of Fungi 8(1):23 doi: 10.3390/jof8010023 |
[8] |
Paul D. 2017. Research on heavy metal pollution of river Ganga: A review. Annals of Agrarian Science 15(2):278−86 doi: 10.1016/J.AASCI.2017.04.001 |
[9] |
He Z, Shentu J, Yang X, Baligar V, Zhang T, et al. 2015. Heavy metal contamination of soils: sources, indicators, and assessment. Journal of Environmental Indicators 9:17−18 |
[10] |
Montaño-López F, Biswas A. 2021. Are heavy metals in urban garden soils linked to vulnerable populations? A case study from Guelph, Canada. Scientific Reports 11(1):11286 doi: 10.1038/s41598-021-90368-3 |
[11] |
Baysal A, Ozbek N, Akm S. 2013. Determination of trace metals in waste water and their removal processes. Waste Water - Treatment Technologies and Recent Analytical Developments, eds. Einschlag FSG, Carlos L. Rijeka: IntechOpen. doi:10.5772/52025 |
[12] |
Hama Aziz KH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, et al. 2023. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Advances 13(26):17595−610 doi: 10.1039/D3RA00723E |
[13] |
Razzak SA, Faruque MO, Alsheikh Z, Alsheikhmohamad L, Alkuroud D, et al. 2022. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances 7:100168 doi: 10.1016/J.ENVADV.2022.100168 |
[14] |
Dell'anno F, Rastelli E, Buschi E, Barone G, Beolchini F, et al. 2022. Fungi can be more effective than bacteria for the bioremediation of marine sediments highly contaminated with heavy metals. Microorganisms 10(5):993 doi: 10.3390/microorganisms10050993/S1 |
[15] |
Talukdar D, Jasrotia T, Sharma R, Jaglan S, Kumar R, et al. 2020. Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. Environmental Technology and Innovation 20:101050 doi: 10.1016/J.ETI.2020.101050 |
[16] |
Talukdar D, Sharma R, Jaglan S, Vats R, Kumar R, et al. 2020. Identification and characterization of cadmium resistant fungus isolated from contaminated site and its potential for bioremediation. Environmental Technology and Innovation 17:100604 doi: 10.1016/J.ETI.2020.100604 |
[17] |
Jayaraman M, Arumugam R. 2014. Metal tolerance analysis of microfungi isolated from metal contaminated soil and waste water. Journal of Microbiology, Biotechnology and Food Sciences 4(1):63−66 doi: 10.15414/JMBFS.2014.4.1.63-66 |
[18] |
Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N. 2011. Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian Journal of Microbiology 51(4):482−87 doi: 10.1007/s12088-011-0110-9 |
[19] |
Dusengemungu L, Kasali G, Gwanama C, Ouma KO. 2020. Recent advances in biosorption of copper and cobalt by filamentous fungi. Frontiers in Microbiology 11:582016 doi: 10.3389/fmicb.2020.582016 |
[20] |
Gajewska J, Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, Mattoo A, Arasimowicz-Jelonek M. 2022. Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus 13(1):6 doi: 10.1186/s43008-022-00092-4 |
[21] |
Rajapaksha RMCP, Tobor-Kapłon MA, Bååth E. 2004. Metal toxicity affects fungal and bacterial activities in soil differently. Applied Environmental Microbiology 70(5):2966−73 doi: 10.1128/AEM.70.5.2966-2973.2004 |
[22] |
Taha A, Hussien W, Gouda S. 2023. Bioremediation of heavy metals in wastewaters: a concise review. Egyptian Journal of Aquatic Biology and Fisheries 27:143−66 doi: 10.21608/EJABF.2023.284415 |
[23] |
Pantidos N, Horsfall LE. 2014. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine & Nanotechnology 5:5 doi: 10.4172/2157-7439.1000233 |
[24] |
Valdez JBT. 2021. Iloilo River: Annual Assessment Report, CY 2021. Report, CY 2021. Department of Environment and Natural Resources. Environmental Management Bureau – R6 |
[25] |
Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E et al. 2020. Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11:2678−54 doi: 10.5943/mycosphere/11/1/20 |
[26] |
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR-protocols: a guide to methods and applications, eds. MA Innis, DH Gelfand, JJ Shinsky, JJ White. San Diego: Academic Press Inc. pp. 315–22. doi: 10.1016/B978-0-12-372180-8.50042-1 |
[27] |
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(W1):W232−W235 doi: 10.1093/nar/gkw256 |
[28] |
Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, LA, USA. USA: IEEE. pp. 1–8. doi: 10.1109/GCE.2010.5676129 |
[29] |
Dissanayake AJ, Bhunjun CS, Maharachchikumbura SSN, Liu JK. 2020. Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 11:2652−76 doi: 10.5943/MYCOSPHERE/11/1/18 |
[30] |
Liu F, Bonthond G, Groenewald JZ, Cai L, Crous PW. 2019. Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia. Studies in Mycology 92:287−415 doi: 10.1016/J.SIMYCO.2018.11.001 |
[31] |
Liu F, Hou L, Raza M, Cai L. 2017. Pestalotiopsis and allied genera from Camellia, with description of 11 new species from China. Scientific Reports 7:866 doi: 10.1038/s41598-017-00972-5 |
[32] |
Nozawa S, Yamaguchi K, Hoang Yen LT, Van Hop D, Nyunt P, et al. 2017. Identification of two new species and a sexual morph from the genus Pseudopestalotiopsis. Mycoscience 58(5):328−37 doi: 10.1016/J.MYC.2017.02.008 |
[33] |
Carmarán CC, Romero AI, Giussani LM. 2006. An approach towards a new phylogenetic classification in Diatrypaceae. Fungal Diversity 23:67−87 |
[34] |
Tiffany L, Gilman J. 1965. Iowa Ascomycetes IV. Diatrypaceae. Iowa State College Journal of Science 40:121−61 |
[35] |
Rappaz F. 1987. Taxonomy and nomenclature of the octosporous Diatrypaceae. Mycologia Helvetica 2:285−648 |
[36] |
Yuan ZQ. 1996. Fungi and associated tree diseases in Melville Island, Northern Territory, Australia. Australian Systematic Botany 9(3):337−60 doi: 10.1071/SB9960337 |
[37] |
Urbez-Torres JR, Peduto F, Striegler RK, Urrea-Romero KE, Rupe JC, et al. 2012. Characterization of fungal pathogens associated with grapevine trunk diseases in Arkansas and Missouri. Fungal Diversity 52(1):169−89 doi: 10.1007/S13225-011-0110-4 |
[38] |
Mayorquin JS, Wang DH, Twizeyimana M, Eskalen A. 2016. Identification, distribution, and pathogenicity of Diatrypaceae and Botryosphaeriaceae associated with citrus branch canker in the Southern California desert. Plant Disease 100(12):2402−13 doi: 10.1094/PDIS-03-16-0362-RE |
[39] |
Castilla-Cayuman A, Lolas M, Díaz G. 2019. First report of Peroneutypa scoparia causing cane dieback in kiwifruit in Chile. Plant Disease 103(2):373 doi: 10.1094/PDIS-06-18-1092-PDN |
[40] |
Eichmeier A, Pecenka J, Spetik M, Necas T, Ondrasek I, et al. 2020. Fungal trunk pathogens associated with Juglans regia in the Czech Republic. Plant Disease 104(3):761−71 doi: 10.1094/PDIS-06-19-1308-RE |
[41] |
Shang QJ, Hyde KD, Jeewon R, Khan S, Promputtha I, et al. 2018. Morpho-molecular characterization of Peroneutypa (Diatrypaceae, Xylariales) with two novel species from Thailand. Phytotaxa 356(1):1−18 doi: 10.11646/phytotaxa.356.1.1 |
[42] |
Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD. 2011. Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L. ) growing in the native tallgrass prairie of northern Oklahoma. Fungal Diversity 47(1):19−27 doi: 10.1007/S13225-010-0085-6 |
[43] |
Pandi A, Kuppuswami G, Ramudu K, Palanivel, S. 2019. A sustainable approach for degradation of leather dyes by a new fungal laccase. Journal of Cleaner Production 211:590−97 doi: 10.1016/j.jclepro.2018.11.048 |
[44] |
Bilal M, Ashraf SS, Iqbal HMN. 2020. Laccase-Mediated bioremediation of dye-based hazardous pollutants. In Methods for Bioremediation of Water and Wastewater Pollution. Environmental Chemistry for a Sustainable World, eds. Inamuddin, Ahamed MI, Lichtfouse E, Asiri AM. vol 51. Cham: Springer. pp. 137−60. doi: 10.1007/978-3-030-48985-4_6 |
[45] |
Gao Y, Liu F, Duan W, Crous PW, Cai L. 2017. Diaporthe is paraphyletic. IMA Fungus 8(1):153−87 doi: 10.5598/imafungus.2017.08.01.11 |
[46] |
Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, et al. 2020. Refined families of Sordariomycetes. Mycosphere 11(1):305−1059 doi: 10.5943/mycosphere/11/1/7 |
[47] |
Norphanphoun C, Gentekaki E, Hongsanan S, Jayawardena R, Senanayake IC, et al. 2022. Diaporthe: formalizing the species-group concept. Mycosphere 13(1):752−819 doi: 10.5943/mycosphere/13/1/9 |
[48] |
Dissanayake AJ, Phillips AJL, Hyde KD, Yan JY, Li XH. 2017. The current status of species in Diaporthe. Mycosphere 8(5):1106−56 doi: 10.5943/mycosphere/8/5/5 |
[49] |
Phukhamsakda C, McKenzie EHC, Phillips AJL, Gareth Jones EB, Jayarama Bhat D. 2020. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal diversity 102(1):1−203 doi: 10.1007/s13225-020-00448-4 |
[50] |
Zervakis G, Dimou D, Balis C. 1998. A check-list of the Greek macrofungi, including hosts and biogeographic distribution: I. Basidiomycotina. Mycotaxon 66:273−336 |
[51] |
Gafforov Y, Ordynets A, Langer E, Yarasheva M, de Mello Gugliotta A, et al. 2020. Species diversity with comprehensive annotations of wood-inhabiting poroid and corticioid fungi in Uzbekistan. Frontiers in Microbiology 11:598321 doi: 10.3389/fmicb.2020.598321 |
[52] |
Miettinen O, Vlasák J, Larsson E, Vlasák J Jr, Seelan JSS, et al. 2023. A revised genus-level classification for Cerrenaceae (Polyporales, Agaricomycetes). Fungal Systematics and Evolution 12:271−322 doi: 10.3114/FUSE.2023.12.14 |
[53] |
Pawlik A, Ruminowicz-Stefaniuk M, Frąc M, Mazur A, Wielbo J, et al. 2019. The wood decay fungus Cerrena unicolor adjusts its metabolism to grow on various types of wood and light conditions. PLoS One 14(2):e0211744 doi: 10.1371/journal.pone.0211744 |
[54] |
Cha HJ, Chiang MWL, Guo SY, Lin SM, Pang KL. 2021. Culturable fungal community of Pterocladiella capillacea in Keelung, Taiwan: Effects of surface sterilization method and isolation medium. Journal of Fungi 7:651 doi: 10.3390/jof7080651 |
[55] |
Glen M, Yuskianti V, Puspitasari D, Francis A, Agustini L, et al. 2014. Identification of basidiomycete fungi in Indonesian hardwood plantations by DNA barcoding. Forest Pathology 44:496−508 doi: 10.1111/efp.12146 |
[56] |
Pang KL, Guo SY, Chen IA, Burgaud G, Luo ZH, et al. 2019. Insights into fungal diversity of a shallow-water hydrothermal vent field at Kueishan Island, Taiwan by culture-based and metabarcoding analyses. PLOS ONE 14:e0226616 doi: 10.1371/journal.pone.0226616 |
[57] |
D'Souza-Ticlo D, Sharma D, Raghukumar C. 2009. A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Marine Biotechnology 11(6):725−37 doi: 10.1007/s10126-009-9187-0 |
[58] |
Xu X, Huang X, Liu D, Lin J, Ye X, et al. 2018. Inhibition of metal ions on Cerrena sp. laccase: Kinetic, decolorization and fluorescence studies. Journal of the Taiwan Institute of Chemical Engineers 84:1−10 doi: 10.1016/j.jtice.2017.12.028 |
[59] |
Hassan A, Periathamby A, Ahmed A, Innocent O, Hamid FS. 2020. Effective bioremediation of heavy metal–contaminated landfill soil through bioaugmentation using consortia of fungi. Journal of Soils and Sediments 20:66−80 doi: 10.1007/s11368-019-02394-4 |
[60] |
Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G. 2014. Fungal laccases and their applications in bioremediation. Enzyme Research 2014:163242 doi: 10.1155/2014/163242 |
[61] |
Chandra R, Chowdhary P. 2015. Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environmental Science. Processes & Impacts 17(2):326−42 doi: 10.1039/c4em00627e |
[62] |
Robene-Soustrade I, Lung-Escarmant B. 1997. Laccase isoenzyme patterns of European Armillaria species from culture filtrates and infected woody plant tissues. European Journal of Forest Pathology 27(2):105−14 doi: 10.1111/j.1439-0329.1997.tb01361.x |
[63] |
Yang J, Wang G, Ng TB, Lin J, Ye X. 2016. Laccase production and differential transcription of laccase genes in Cerrena sp. in response to metal ions, aromatic compounds, and nutrients. Frontiers in Microbiology 6:1558 doi: 10.3389/fmicb.2015.01558 |
[64] |
Baldrian P, Gabriel J. 2002. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiology Letters 206(1):69−74 doi: 10.1111/j.1574-6968.2002.tb10988.x |
[65] |
Goligar N, Saadatmand S, Khavarinejad RA. 2023. Mycoremediation of lead and cadmium by lignocellulosic enzymes of Pleurotus eryngii. AMB Express 13:127 doi: 10.1186/s13568-023-01626-8 |
[66] |
Rodríguez Couto S, Sanromán M, Gübitz GM. 2005. Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta. Chemosphere 58(4):417−22 doi: 10.1016/j.chemosphere.2004.09.033 |
[67] |
Chen CC, Chen CY, Wu SH. 2021. Species diversity, taxonomy and multi-gene phylogeny of phlebioid clade (Phanerochaetaceae, Irpicaceae, Meruliaceae) of Polyporales. Fungal Diversity 111(1):337−442 doi: 10.1007/s13225-021-00490-w |
[68] |
Suhara H, Maekawa N, Kaneko S, Hattori T, Sakai K, et al. 2003. A new species, Ceriporia lacerata, isolated from white-rotted wood. Mycotaxon 86:335−47 |
[69] |
Wu B, Hussain M, Zhang W, Stadler M, Liu X, et al. 2019. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10(3):127−40 doi: 10.1128/microbiolspec.FUNK-0052-2016 |
[70] |
Buzina W, Lass-Flörl C, Kropshofer G, Freund MC, Marth E. 2005. The polypore mushroom Irpex lacteus, a new causative agent of fungal infections. Journal of Clinical Microbiology 43(4):2009−11 doi: 10.1128/JCM.43.4.2009-2011.2005 |
[71] |
Zhao Y, Li SQ, Li HJ, Lan WJ. 2013. Lanostane triterpenoids from the fungus Ceriporia lacerate associated with Acanthaster planci. Chemistry of Natural Compounds 49(4):653−56 doi: 10.1007/s10600-013-0701-2 |
[72] |
Fang ST, Miao FP, Yin XL, Ji NY. 2024. A new lanostane-type triterpenoid from the marine shellfish symbiotic fungus Ceriporia lacerata CD7-5. Natural Product Research 38:1510−16 doi: 10.1080/14786419.2022.2154345 |
[73] |
Gareth Jones EB, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, et al. 2019. An online resource for marine fungi. Fungal Diversity 96(1):347−433 doi: 10.1007/S13225-019-00426-5 |
[74] |
Calabon MS, Gareth Jones EB, Pang KL, Abdel-Wahab MA, Jin J, et al. 2023. Updates on the classification and numbers of marine fungi. Botanica Marina 66(4):213−38 doi: 10.1515/bot-2023-0032 |
[75] |
Trianto A, Radjasa OK, Subagiyo S, Purnaweni H, Bahry MS, et al. 2021. Potential of fungi isolated from a mangrove ecosystem in Northern Sulawesi, Indonesia: Protease, cellulase and anti-microbial capabilities. Biodiversitas 22(4):1717−24 doi: 10.13057/biodiv/d220415 |
[76] |
Kuuskeri J, Mäkelä MR, Isotalo J, Oksanen I, Lundell T. 2015. Lignocellulose-converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polyporales, Basidiomycota). BMC microbiology 15:217 doi: 10.1186/s12866-015-0538-x |
[77] |
Li X, Kondo R, Sakai K. 2002. Biodegradation of sugarcane bagasse with marine fungus Phlebia sp. MG-60. Journal of Wood Science 48(2):159−62 doi: 10.1007/BF00767294 |
[78] |
Akar T, Aydın P, Celik S, Akar ST. 2020. Phlebia gigantea cells immobilized on renewable biomass matrix as potential ecofriendly scavenger for lead contamination. Environmental Science and Pollution Research International 27(14):16177−88 doi: 10.1007/s11356-020-07889-z |
[79] |
Sharma KR, Giri R, Sharma RK. 2020. Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora. Letters in Applied Microbiology 71(6):637−44 doi: 10.1111/lam.13372 |
[80] |
Abdel-Hamid AM, Solbiati JO, Cann IKO. 2013. Insights into lignin degradation and its potential industrial applications. Advances in Applied Microbiology 82:1−28 doi: 10.1016/b978-0-12-407679-2.00001-6 |
[81] |
Chen L, Zhang X, Zhang M, Zhu Y, Zhuo R. 2022. Removal of heavy-metal pollutants by white rot fungi: Mechanisms, achievements, and perspectives. Journal of Cleaner Production 354:131681 doi: 10.1016/j.jclepro.2022.131681 |
[82] |
Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS. 2015. Can laccases catalyze bond cleavage in lignin? Biotechnology Advances 33(1):13−24 doi: 10.1016/j.biotechadv.2014.12.008 |
[83] |
Zhou LW, Ji XH, Vlasák J, Dai YC. 2018. Taxonomy and phylogeny of Pyrrhoderma: a redefinition, the segregation of Fulvoderma, gen. nov. , and identifying four new species. Mycologia 110(5):872−89 doi: 10.1080/00275514.2018.1474326 |
[84] |
Chang TT. 1995. Decline of nine tree species associated with brown root rot caused by Phellinus noxius. Plant Disease 79:962−65 doi: 10.1094/PD-79-0962 |
[85] |
Ann PJ, Chang TT, Ko WH. 2002. Phellinus noxius brown root rot of fruit and ornamental trees in Taiwan. Plant Disease 86(8):820−826 doi: 10.1094/PDIS.2002.86.8.820 |
[86] |
Schwarze FWMR, Jauss F, Spencer C, Hallam C, Schubert M. 2012. Evaluation of an antagonistic Trichoderma strain for reducing the rate of wood decomposition by the white rot fungus Phellinus noxius. Biological Control 61(2):160−68 doi: 10.1016/J.BIOCONTROL.2012.01.016 |
[87] |
Adikaram NKB, Yakandawala DMD. 2020. A checklist of plant pathogenic fungi and Oomycota in Sri Lanka. Ceylon Journal of Science 49(1):93−123 doi: 10.4038/CJS.V49I1.7709 |
[88] |
Wang JW, Liu DY, Zhang HZ, Tan Z, Zheng CJ, et al. 2024. Drimane-type sesquiterpenoids and their anti-inflammatory evaluation from Pyrrhoderma noxium HNNU0524. Natural Product Research 38(10):1711−18 doi: 10.1080/14786419.2023.2218008 |
[89] |
Raper JR, Miles PG. 1958. The genetics of Schizophyllum commune. Genetics 43(3):530 doi: 10.1093/genetics/43.3.530 |
[90] |
Arifeen MZU, Yang X, Li F, Xue Y, Gong P, et al. 2020. Growth behaviors of deep subseafloor Schizophyllum commune in response to various environmental conditions. Acta Microbiologica Sinica 60(9):1882−92 doi: 10.13343/J.CNKI.WSXB.20200157 |
[91] |
Arifeen MZU, Chu C, Yang X, Liu J, Huang X, et al. 2021. The anaerobic survival mechanism of Schizophyllum commune 20R-7-F01, isolated from deep sediment 2 km below the seafloor. Environmental Microbiology 23(2):1174−85 doi: 10.1111/1462-2920.15332 |
[92] |
Zhang X, Li Y, Yu Z, Liang X, Qi S. 2021. Phylogenetic diversity and bioactivity of culturable deep-sea-derived fungi from Okinawa Trough. Journal of Oceanology and Limnology 39(3):892−902 doi: 10.1007/s00343-020-0003-z |
[93] |
Liu X, Huang X, Chu C, Xu H, Wang L, et al. 2022. Genome, genetic evolution, and environmental adaptation mechanisms of Schizophyllum commune in deep subseafloor coal-bearing sediments. iScience 25(6):104417 doi: 10.1016/j.isci.2022.104417 |
[94] |
Gnavi G, Garzoli L, Poli A, Prigione V, Burgaud G, et al. 2017. The culturable mycobiota of Flabellia petiolata: First survey of marine fungi associated to a Mediterranean green alga. PLoS One 12(4):e0175941 doi: 10.1371/journal.pone.0175941 |
[95] |
Garzoli L, Poli A, Prigione V, Gnavi G, Varese GC. 2018. Peacock's tail with a fungal cocktail: first assessment of the mycobiota associated with the brown alga Padina pavonica. Fungal Ecology 35:87−97 doi: 10.1016/j.funeco.2018.05.005 |
[96] |
Panno L, Bruno M, Voyron S, Anastasi A, Gnavi G, et al. 2013. Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnology 30(6):685−694 doi: 10.1016/J.NBT.2013.01.010 |
[97] |
Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, et al. 2019. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92:135−54 doi: 10.1016/j.simyco.2018.05.001 |
[98] |
Wollenberg A, Kretzschmar J, Drobot B, Hübner R, Freitag L, et al. 2021. Uranium (VI) bioassociation by different fungi – a comparative study into molecular processes. Journal of Hazardous Materials 411:125068 doi: 10.1016/j.jhazmat.2021.125068 |
[99] |
Yan ZY, Zhao MR, Huang CY, Zhang LJ, Zhang JX. 2021. Trehalose alleviates high-temperature stress in Pleurotus ostreatus by affecting central carbon metabolism. Microbial Cell Factories 20(1):82 doi: 10.1186/s12934-021-01572-9 |
[100] |
Xu F, Chen P, Li H, Qiao S, Wang J, et al. 2021. Comparative transcriptome analysis reveals the differential response to cadmium stress of two Pleurotus fungi: Pleurotus cornucopiae and Pleurotus ostreatus. Journal of Hazardous Materials 416:125814 doi: 10.1016/j.jhazmat.2021.125814 |
[101] |
Günther A, Raff J, Merroun ML, Roßberg A, Kothe E, et al. 2014. Interaction of U(VI) with Schizophyllum commune studied by microscopic and spectroscopic methods. BioMetals 27(4):775−85 doi: 10.1007/s10534-014-9772-1 |
[102] |
Kleijburg FEL, Safeer AA, Baldus M, Wösten HAB. 2023. Binding of micro-nutrients to the cell wall of the fungus Schizophyllum commune. The Cell Surface 10:100108 doi: 10.1016/j.tcsw.2023.100108 |
[103] |
Kirtzel J, Scherwietes EL, Merten D, Krause K, Kothe E. 2019. Metal release and sequestration from black slate mediated by a laccase of Schizophyllum commune. Environmental Science and Pollution Research International 26(1):5−13 doi: 10.1007/s11356-018-2568-z |
[104] |
Javaid A, Bajwa R, Javaid A. 2010. Biosorption of heavy metals using a dead macro fungus Schizophyllum commune Fries: evaluation of equilibrium and kinetic models. Pakistan Journal of Botany 42(3):2105−18 |
[105] |
Traxler L, Shrestha J, Richter M, Krause K, Schäfer T, et al. 2022. Metal adaptation and transport in hyphae of the wood-rot fungus Schizophyllum commune. Journal of Hazardous Materials 425:127978 doi: 10.1016/j.jhazmat.2021.127978 |
[106] |
Guarro J, Gené J, Stchigel AM. 1999. Developments in fungal taxonomy. Clinical Microbiology Review 12(3):454−500 doi: 10.1128/CMR.12.3.454 |
[107] |
Li H, Guo M, Wang C, Li Y, Fernandez AM, et al. 2020. Epidemiological study of Trichosporon asahii infections over the past 23 years. Epidemiology and Infection 148:e169 doi: 10.1017/S0950268820001624 |
[108] |
Vogel C, Rogerson A, Schatz S, Laubach H, Tallman A, et al. 2007. Prevalence of yeasts in beach sand at three bathing beaches in South Florida. Water Research 41(9):1915−20 doi: 10.1016/J.WATRES.2007.02.010 |
[109] |
Singh P, Raghukumar C, Verma P, Shouche Y. 2012. Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World Journal of Microbiology and Biotechnology 28(2):659−67 doi: 10.1007/s11274-011-0859-3 |
[110] |
Singh P, Raghukumar C, Meena RM, Verma P, Shouche Y. 2012. Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches. Fungal Ecology 5(5):543−53 doi: 10.1016/J.FUNECO.2012.01.001 |
[111] |
Chi ZM, Liu TT, Chi Z, Liu GL, Wang ZP. 2012. Occurrence and diversity of yeasts in the mangrove ecosystems in Fujian, Guangdong and Hainan provinces of China. Indian Journal of Microbiology 52(3):346−53 doi: 10.1007/s12088-012-0251-5 |
[112] |
Nhi-Cong LT, Mai CTN, Minh NN, Ha HP, Lien DT, et al. 2016. Degradation of sec-hexylbenzene and its metabolites by a biofilm-forming yeast Trichosporon asahii B1 isolated from oil-contaminated sediments in Quangninh coastal zone, Vietnam. Journal of Environmental Science and Health, Part A 51(3):267−75 doi: 10.1080/10934529.2015.1094351 |
[113] |
Vidya P, Sebastian CD. 2022. Yeast diversity in the mangrove sediments of North Kerala, India. European Journal of Biology 81(1):50−57 doi: 10.26650/EURJBIOL.2022.1027475 |
[114] |
Ilyas S, Rehman A. 2018. Metal resistance and uptake by Trichosporon asahii and Pichia kudriavzevii isolated from industrial effluents. Archives of Environmental Protection 44(3):77−84 doi: 10.24425/aep.2018.122291 |
[115] |
Elahi A, Rehman A. 2017. Oxidative stress, chromium-resistance and uptake by fungi: isolated from industrial wastewater. Brazilian Archives of Biology and Technology 60:e17160394 doi: 10.1590/1678-4324-2017160394 |
[116] |
Ilyas S, Rehman A, Varela AC, Sheehan D. 2014. Redox proteomics changes in the fungal pathogen Trichosporon asahii on arsenic exposure: identification of protein responses to metal-induced oxidative stress in an environmentally-sampled isolate. PloS One 9(7):e102340 doi: 10.1371/journal.pone.0102340 |
[117] |
Ezzouhri L, Castro E, Moya M, Espínola F, Lairini K. 2009. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier Morocco. African Journal of Microbiology Research 3(2):35−48 |
[118] |
Iram S, Zaman A, Iqbal Z, Shabbir R. 2013. Heavy metal tolerance of fungus isolated from soil contaminated with sewage and industrial wastewater. Polish Journal of Environmental Studies 22(3):691−97 |
[119] |
Mohammadian E, Babai Ahari A, Arzanlou M, Oustan S, Khazaei SH. 2017. Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Chemosphere 185:290−96 doi: 10.1016/j.chemosphere.2017.07.022 |
[120] |
Iram S, Parveen K, Usman J, Nasir K, Akhtar N, et al. 2012. Heavy metal tolerance of filamentous fungal strains isolated from soil irrigated with industrial wastewater. Biologija 58(3):107−16 doi: 10.6001/biologija.v58i3.2527 |
[121] |
Qayyum S, Khan I, Maqbool F, Zhao Y, Gu Q, et al. 2016. Isolation and characterization of heavy metal resistant fungal isolates from Industrial soil, China. Pakistan Journal of Zoology 48(5):1241−47 |
[122] |
Zafar S, Aqil F, Ahmad I. 2007. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology 98(13):2557−61 doi: 10.1016/j.biortech.2006.09.051 |
[123] |
Muñoz AJ, Ruiz E, Abriouel H, Gálvez A, Ezzouhri L, et al. 2012. Heavy metal tolerance of microorganisms isolated from wastewaters: Identification and evaluation of its potential for biosorption. Chemical Engineering Journal, 210:325−32 doi: 10.1016/j.cej.2012.09.007 |
[124] |
Taberna HS, Nillos MG, Gamarcha L, Pahila IG, Gastar AN. 2014. Analysis of road-deposited sediments for heavy metal pollutants in bridge sidewalks of Iloilo City, Philippines. Advances in Environmental Sciences-International Journal of the Bioflux Society 6(1):69−75 |
[125] |
Sarinas BGS, Gellada LD, Jamolangue EB, Teruñez MR, et al. 2014. Assessment of heavy metals in sediments of Iloilo Batiano River, Philippines. International Journal of Environmental Science and Development 5(6):543−46 doi: 10.7763/ijesd.2014.v5.542 |
[126] |
Borlongan I, Golez N, Lorque F. 2010. Physico-chemical assessment of the Jalaur River system, Iloilo, Philippines. Siliman Journal 51(1):224−46 |
[127] |
Sarinas BGS, Gellada L, Alfonsa JK, Domiquel K, Gumawa LR, et al. 2014. Heavy metal concentration in seawater at Villa Beach, Iloilo City, Philippines. IAMURE International Journal of Ecology and Conservation 11(1):41−53 doi: 10.7718/ijec.v11i1.806 |
[128] |
Birch G, Taylor S. 1999. Source of heavy metals in sediments of the Port Jackson estuary, Australia. Science of the Total Environment 227(2−3):123−38 doi: 10.1016/s0048-9697(99)00007-8 |
[129] |
Abdollahi S, Raoufi Z, Faghiri I, Savari A, Nikpour Y, et al. 2013. Contamination levels and spatial distributions of heavy metals and PAHs in surface sediment of Imam Khomeini Port, Persian Gulf, Iran. Marine Pollution Bulletin 71(1-2):336−45 doi: 10.1016/j.marpolbul.2013.01.025 |
[130] |
Sany S, Salleh A, Sulaiman A, Sasekumar A, Rezayi M, et al. 2012. Heavy metal contamination in water and sediment of the Port Klang coastal area, Selangor, Malaysia. Environmental Earth Sciences 69(6):2013−25 doi: 10.1007/s12665-012-2038-8 |
[131] |
Pejman A, Nabi Bidhendi G, Ardestani M, Saeedi M, Baghvand A. 2015. A new index for assessing heavy metals contamination in sediments: a case study. Ecological Indicators 58:365−73 doi: 10.1016/J.ECOLIND.2015.06.012 |
[132] |
Huang Z, Zhao W, Xu T, Zheng B, Yin D. 2019. Occurrence and distribution of antibiotic resistance genes in the water and sediments of Qingcaosha Reservoir, Shanghai, China. Environmental Sciences Europe 31(1):81 doi: 10.1186/s12302-019-0265-2 |
[133] |
Hauer C, Leitner P, Unfer G, Pulg U, Habersack H, et al. 2018. The role of sediment and sediment dynamics in the aquatic environment. In Riverine Ecosystem Management. Aquatic Ecology Series, eds. Schmutz S, Sendzimir J. Vol 8. Cham: Springer . pp 151–69. doi: 10.1007/978-3-319-73250-3_8 |
[134] |
Shyleshchandran MN, Mohan M, Ramasamy EV. 2018. Risk assessment of heavy metals in Vembanad Lake sediments (south-west coast of India), based on acid-volatile sulfide (AVS)-simultaneously extracted metal (SEM) approach. Environmental Science and Pollution Research 25(8):7333−45 doi: 10.1007/s11356-017-0997-8 |
[135] |
Liu M, Zhong J, Zheng X, Yu J, Liu D, et al. 2018. Fraction distribution and leaching behavior of heavy metals in dredged sediment disposal sites around Meiliang Bay, Lake Taihu (China). Environmental Science and Pollution Research 25(10):9737−9744 doi: 10.1007/S11356-018-1249-2 |
[136] |
Chen CY, Wu ZC, Liu TY, Yu SS, Tsai JN, et al. 2023. Investigation of asymptomatic infection of Phellinus noxius in herbaceous plants. Phytopathology 113(3):460−69 doi: 10.1094/PHYTO-08-22-0281-R |
[137] |
Liu M, Chen J, Sun X, Hu Z, Fan D. 2019. Accumulation and transformation of heavy metals in surface sediments from the Yangtze River estuary to the East China Sea shelf. Environmental Pollution 245:111−21 doi: 10.1016/J.ENVPOL.2018.10.128 |
[138] |
Idris AM, Eltayeb MAH, Potgieter-Vermaak SS, Van Grieken R, Potgieter JH. 2007. Assessment of heavy metals pollution in Sudanese harbours along the Red Sea Coast. Microchemical Journal 87(2):104−12 doi: 10.1016/J.MICROC.2007.06.004 |
[139] |
Salati S, Moore F. 2010. Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran. Environmental monitoring and assessment 164:677−89 doi: 10.1007/s10661-009-0920-y |
[140] |
Jakimska A, Konieczka P, Skóra K, Namieśnik J. 2011. Bioaccumulation of metals in tissues of marine animals, Part II: metal concentrations in animal tissues. Polish Journal of Environmental Studies 20(5):1127−46 |
[141] |
Takarina V, Adiwibowo A. 2011. Impact of heavy metals contamination on the biodiversity of marine benthic organisms in Jakarta Bay. Journal of Coastal Development 14(2):168−171 |
[142] |
Liu J, Wang J, Gao G, Bartlam MG, Wang Y. 2015. Distribution and diversity of fungi in freshwater sediments on a river catchment scale. Frontiers in Microbiology 6:329 doi: 10.3389/fmicb.2015.00329 |
[143] |
Shang Y, Wu X, Wang X, Dou H, Wei Q, et al. 2022. Environmental factors and stochasticity affect the fungal community structures in the water and sediments of Hulun Lake, China. Ecology and Evolution 12(11):e9510 doi: 10.1002/ece3.9510 |
[144] |
Dockrey J, Lindsay M, Mayer K, Beckie R, Norlund K, et al. 2014. Acidic microenvironments in waste rock characterized by neutral drainage: Bacteria–mineral interactions at sulfide surfaces. Minerals 4(1):170−90 doi: 10.3390/min4010170 |
[145] |
Manguilimotan L, Bitacura J. 2018. Biosorption of cadmium by filamentous fungi isolated from coastal water and sediments. Journal of Toxicology 2018:170510 doi: 10.1155/2018/7170510 |
[146] |
Passarini MRZ, Ottoni JR, Costa PEDS, Hissa DC, Falcão RM, et al. 2022. Fungal community diversity of heavy metal contaminated soils revealed by metagenomics. Archives of Microbiology 204(5):255 doi: 10.1007/s00203-022-02860-7 |
[147] |
Bonugli-Santos RC, Durrant LR, Sette LD. 2020. Analysis of fungal composition in mine-contaminated soils in Hechi City. Current Microbiology 77(10):2685−93 doi: 10.1007/s00284-020-02044-w |
[148] |
Bonugli-Santos R, Durrant L, Sette L. 2012. The production of ligninolytic enzymes by marine-derived Basidiomycetes and their biotechnological potential in the biodegradation of recalcitrant pollutants and the treatment of textile effluents. Water, Air, and Soil Pollution 223(5):2333−45 doi: 10.1007/s11270-011-1027-y |
[149] |
Cui Z, Zhang X, Yang H, Sun L. 2017. Bioremediation of heavy metal pollution utilizing composite microbial agent of Mucor circinelloides, Actinomucor sp. , and Mortierella sp. Journal of Environmental Chemical Engineering 5(4):3616−21 doi: 10.1016/j.jece.2017.07.021 |
[150] |
Lin Y, Xiao W, Ye Y, Wu C, Hu Y, et al. 2020. Adaptation of soil fungi to heavy metal contamination in paddy fields—a case study in eastern China. Environmental Science and Pollution Research International 27(22):27819−30 doi: 10.1007/s11356-020-09049-9 |
[151] |
Li J, Zheng Q, Liu J, Pei S, Yang Z, et al. 2024. Bacterial–fungal interactions and response to heavy metal contamination of soil in agricultural areas. Frontiers in Microbiology 15:1395154 doi: 10.3389/fmicb.2024.1395154 |
[152] |
Lin Y, Ye Y, Hu Y, Shi H. 2019. The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Ecotoxicology and Environmental Safety 180:557−64 doi: 10.1016/j.ecoenv.2019.05.057 |
[153] |
Chandra P, Enespa. 2019. Mycoremediation of environmental pollutants from contaminated soil. In Mycorrhizosphere and Pedogenesis, eds Varma A, Choudhary D. Singapore: Springer. pp 239–74. doi: 10.1007/978-981-13-6480-8_15 |
[154] |
Singh A, Gauba P. 2014. Mycoremediation: A treatment for heavy metal pollution of soil. Journal of Civil Engineering and Environmental Technology 1(4):59−61 |
[155] |
Dashtban M, Schraft H, Syed TA, Qin W. 2010. Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology 1(1):36 |
[156] |
Thippeswamy B, Shivakumar CK, Krishnappa M. 2012. Bioaccumulation potential of Aspergillus niger and Aspergillus flavus for removal of heavy metals from paper mill effluent. Journal of Environmental Biology 33(6):1063−68 |
[157] |
Tripathi P, Khare P, Barnawal D, Shanker K, Srivastava PK, et al. 2020. Bioremediation of arsenic by soil methylating fungi: Role of Humicola sp. strain 2WS1 in amelioration of arsenic phytotoxicity in Bacopa monnieri L. Science of the Total Environment 716:136758 doi: 10.1016/j.scitotenv.2020.136758 |