[1]

Wang L, Luo Z, Yang M, Li D, Qi M, et al. 2020. Role of exogenous melatonin in table grapes: First evidence on contribution to the phenolics-oriented response. Food Chemistry 329:127155

doi: 10.1016/j.foodchem.2020.127155
[2]

Yamada M, Yamane H, Sato A, Hirakawa N, Iwanami H, et al. 2008. New grape cultivar 'Shine Muscat'. Bulletin of the National Institute of Fruit Tree Science 7:21−38

[3]

Lim YS, Hassan O, Chang T. 2019. First report of anthracnose of shine muscat caused by Colletotrichum fructicola in Korea. Mycobiology 49:183−87

doi: 10.1080/12298093.2019.1697190
[4]

Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13:414−30

doi: 10.1111/j.1364-3703.2011.00783.x
[5]

Zhou H, Xie Y, Wu T, Wang X, Gao J, et al. 2024. Cork taint of wines: the formation, analysis, and control of 2,4,6-trichloroanisole. Food Innovation and Advances 3:111−25

doi: 10.48130/fia-0024-0011
[6]

Xiang Y, Yuan H, Mao M, Hu Q, Dong Y, et al. 2024. Reciprocal inhibition of autophagy and Botrytis cinerea-induced programmed cell death in 'Shine Muscat' grapes. Food Chemistry 460:140512

doi: 10.1016/j.foodchem.2024.140512
[7]

Zhang Z, Zhao P, Zhang P, Su L, Jia H, et al. 2020. Integrative transcriptomics and metabolomics data exploring the effect of chitosan on postharvest grape resistance to Botrytis cinerea. Postharvest Biology and Technology 167:111248

doi: 10.1016/j.postharvbio.2020.111248
[8]

Romanazzi G, Lichter A, Gabler FM, Smilanick JL. 2012. Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biology and Technology 63:141−47

doi: 10.1016/j.postharvbio.2011.06.013
[9]

Zhang P, Jia H, Gong P, Sadeghnezhad E, Pang Q, et al. 2021. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Food Chemistry 337:127772

doi: 10.1016/j.foodchem.2020.127772
[10]

Xu J, Zhang Z, Li X, Wei J, Wu B. 2019. Effect of nitrous oxide against Botrytis cinerea and phenylpropanoid pathway metabolism in table grapes. Scientia Horticulturae 254:99−105

doi: 10.1016/j.scienta.2019.04.061
[11]

Song Z, Pang Q, Lu S, Yu L, Pervaiz T, et al. 2022. Transcriptomic and metabolmic approaches to counter the effect of Botrytis cinerea in grape berry with the application of nitric oxide. Scientia Horticulturae 296:110901

doi: 10.1016/j.scienta.2022.110901
[12]

Xu D, Deng Y, Han T, Jiang L, Xi P, et al. 2018. In vitro and in vivo effectiveness of phenolic compounds for the control of postharvest gray mold of table grapes. Postharvest Biology and Technology 139:106−14

doi: 10.1016/j.postharvbio.2017.08.019
[13]

Raynaldo FA, Xu Y, Yolandani, Wang Q, Wu B, et al. 2024. Biological control and other alternatives to chemical fungicides in controlling postharvest disease of fruits caused by Alternaria alternata and Botrytis cinerea. Food Innovation and Advances 3:135−43

doi: 10.48130/fia-0024-0014
[14]

Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. 2017. Functional roles of microRNAs in agronomically important plants — potential as targets for crop improvement and protection. Frontiers in Plant Science 8:378

doi: 10.3389/fpls.2017.00378
[15]

Dong Y, Tang M, Huang Z, Song J, Xu J, et al. 2022. The miR164a-NAM3 module confers cold tolerance by inducing ethylene production in tomato. The Plant Journal 111:440−56

doi: 10.1111/tpj.15807
[16]

Peláez P, Sanchez F. 2013. Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. Frontiers in Plant Science 4:343

doi: 10.3389/fpls.2013.00343
[17]

Yang Z, Hui S, Lv Y, Zhang M, Chen D, et al. 2022. miR395-regulated sulfate metabolism exploits pathogen sensitivity to sulfate to boost immunity in rice. Molecular Plant 15:671−88

doi: 10.1016/j.molp.2021.12.013
[18]

Tian X, Song L, Wang Y, Jin W, Tong F, et al. 2018. miR394 acts as a negative regulator of Arabidopsis resistance to B. cinerea infection by targeting LCR. Frontiers in Plant Science 9:903

doi: 10.3389/fpls.2018.00903
[19]

Wu F, Qi J, Meng X, Jin W. 2020. miR319c acts as a positive regulator of tomato against Botrytis cinerea infection by targeting TCP29. Plant Science 300:110610

doi: 10.1016/j.plantsci.2020.110610
[20]

Val-Torregrosa B, Bundó M, Martín-Cardoso H, Bach-Pages M, Chiou TJ, et al. 2022. Phosphate-induced resistance to pathogen infection in Arabidopsis. The Plant Journal 110:452−69

doi: 10.1111/tpj.15680
[21]

Bolwell GP, Daudi A. 2009. Reactive oxygen species in plant–pathogen interactions. In Reactive Oxygen Species in Plant Signaling, eds. Rio L, Puppo A. Berlin, Heidelberg: Springer. pp. 113−33. doi: 10.1007/978-3-642-00390-5_7

[22]

Lamb C, Dixon RA. 1997. The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology 48:251−75

doi: 10.1146/annurev.arplant.48.1.251
[23]

Tsuda K, Katagiri F. 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology 13:459−65

doi: 10.1016/j.pbi.2010.04.006
[24]

Silva KJP, Mahna N, Mou Z, Folta KM. 2018. NPR1 as a transgenic crop protection strategy in horticultural species. Horticulture Research 5:15

doi: 10.1038/s41438-018-0026-1
[25]

Chico J-M, Fernández-Barbero G, Chini A, Fernández-Calvo P, Díez-Díaz M, et al. 2014. Repression of Jasmonate-Dependent Defenses by Shade Involves Differential Regulation of Protein Stability of MYC Transcription Factors and Their JAZ Repressors in Arabidopsis. The Plant Cell 26:1967−80

doi: 10.1105/tpc.114.125047
[26]

Vogt T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3:2−20

doi: 10.1093/mp/ssp106
[27]

Ge Y, Duan B, Li C, Tang Q, Li X, et al. 2018. γ-Aminobutyric acid delays senescence of blueberry fruit by regulation of reactive oxygen species metabolism and phenylpropanoid pathway. Scientia Horticulturae 240:303−9

doi: 10.1016/j.scienta.2018.06.044
[28]

Yao H, Tian S. 2005. Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology 35:253−62

doi: 10.1016/j.postharvbio.2004.09.001
[29]

Liu R, Lai B, Hu B, Qin Y, Hu G, et al. 2017. Identification of microRNAs and their target genes related to the accumulation of anthocyanins in Litchi chinensis by high-throughput sequencing and degradome analysis. Frontiers in Plant Science 7:2059

doi: 10.3389/fpls.2016.02059
[30]

Xie Z, Wang A, Li H, Yu J, Jiang J, et al. 2017. High throughput deep sequencing reveals the important roles of microRNAs during sweetpotato storage at chilling temperature. Scientific Reports 7:16578

doi: 10.1038/s41598-017-16871-8
[31]

Rooy SSB, Ghabooli M, Salekdeh GH, Fard EM, Karimi R, et al. 2023. Identification of novel cold stress responsive microRNAs and their putative targets in 'Sultana' grapevine (Vitis vinifera) using RNA deep sequencing. Acta Physiologiae Plantarum 45:2

doi: 10.1007/s11738-022-03484-6
[32]

Wang C, Leng X, Zhang Y, Kayesh E, Zhang Y, et al. 2014. Transcriptome-wide analysis of dynamic variations in regulation modes of grapevine microRNAs on their target genes during grapevine development. Plant Molecular Biology 84:269−85

doi: 10.1007/s11103-013-0132-2
[33]

Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BACM, et al. 2012. A microRNA superfamily regulates nucleotide binding site–Leucine-rich repeats and other mRNAs. The Plant Cell 24:859−74

doi: 10.1105/tpc.111.095380
[34]

Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, et al. 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants 2:16153

doi: 10.1038/nplants.2016.153
[35]

Matthewman CA, Kawashima CG, Húska D, Csorba T, Dalmay T, Kopriva S. 2012. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS Letters 586:3242−48

doi: 10.1016/j.febslet.2012.06.044
[36]

Li L, Yi H, Xue M, Yi M. 2017. miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana. Ecotoxicology 26:1181−87

doi: 10.1007/s10646-017-1843-y
[37]

Zhang Q, Li Y, Zhang Y, Wu C, Wang S, et al. 2017. Md-miR156ab and Md-miR395 target WRKY transcription factors to influence apple resistance to leaf spot disease. Frontiers in Plant Science 8:526

doi: 10.3389/fpls.2017.00526
[38]

Bloem E, Haneklaus S, Schnug E. 2015. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Frontiers in Plant Science 5:779

doi: 10.3389/fpls.2014.00779
[39]

Chen Y, Li Z, Ettoumi FE, Li D, Wang L, et al. 2022. The detoxification of cellular sulfite in table grape under SO2 exposure: Quantitative evidence of sulfur absorption and assimilation patterns. Journal of Hazardous Materials 439:129685

doi: 10.1016/j.jhazmat.2022.129685
[40]

Ghanta S, Bhattacharyya D, Chattopadhyay S. 2011. Glutathione signaling acts through NPR1-dependent SA-mediated pathway to mitigate biotic stress. Plant Signaling & Behavior 6:607−9

doi: 10.4161/psb.6.4.15402
[41]

German MA, Pillay M, Jeong DH, Hetawal A, Luo S, et al. 2008. Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nature Biotechnology 26:941−46

doi: 10.1038/nbt1417
[42]

Yan P, Zeng Y, Shen W, Tuo D, Li X, et al. 2020. Nimble cloning: a simple, versatile, and efficient system for standardized molecular cloning. Frontiers in Bioengineering and Biotechnology 7:460

doi: 10.3389/fbioe.2019.00460
[43]

Tang G, Yan J, Gu Y, Qiao M, Fan R, et al. 2012. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods 58:118−25

doi: 10.1016/j.ymeth.2012.10.006
[44]

Zhang PF, Dong YM, Wen HY, Liang CM, Niu TQ, et al. 2020. Knockdown of VvMYBA1 via virus-induced gene silencing decreases anthocyanin biosynthesis in grape berries. Canadian Journal of Plant Science 100:175−84

doi: 10.1139/cjps-2018-0322
[45]

Li JB, Luan YS, Liu Z. 2015. SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato. Plant Cell, Tissue and Organ Culture (PCTOC) 123:67−81

doi: 10.1007/s11240-015-0815-2
[46]

Jiang N, Meng J, Cui J, Sun G, Luan Y. 2018. Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. Horticulture Research 5:9

doi: 10.1038/s41438-018-0017-2
[47]

Li Z, Chen S, Qi M, Yang M, Yuan H, et al. 2023. Inhibition of postharvest rachis browning of table grapes by sulfur dioxide: Evidence from phenolic metabolism and sulfur assimilation. Postharvest Biology and Technology 204:112413

doi: 10.1016/j.postharvbio.2023.112413