[1]

More AS, Ranadheera CS, Fang Z, Warner R, Ajlouni S. 2020. Biomarkers associated with quality and safety of fresh-cut produce. Food Bioscience 34:100524

doi: 10.1016/j.fbio.2019.100524
[2]

Wu J, Zhang L, Fan K. 2024. Recent advances in polysaccharide-based edible coatings for preservation of fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition 64:3823−38

doi: 10.1080/10408398.2022.2136136
[3]

Liu X, Liao W, Xia W. 2023. Recent advances in chitosan based bioactive materials for food preservation. Food Hydrocolloids 140:108612

doi: 10.1016/j.foodhyd.2023.108612
[4]

Rout S, Tambe S, Deshmukh RK, Mali S, Cruz J, et al. 2022. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends in Food Science & Technology 129:421−39

doi: 10.1016/j.jpgs.2022.10.012
[5]

Xie Q, Liu G, Zhang Y. 2024. Edible films/coatings containing bioactive ingredients with micro/nano encapsulation: A comprehensive review of their fabrications, formulas, multifunctionality and applications in food packaging. Critical Reviews in Food Science and Nutrition 64:5341−78

doi: 10.1080/10408398.2022.2153794
[6]

Ahmed S, Sameen DE, Lu R, Li R, Dai J, et al. 2022. Research progress on antimicrobial materials for food packaging. Critical Reviews in Food Science and Nutrition 62(11):3088−102

doi: 10.1080/10408398.2020.1863327
[7]

Cazón P, Vázquez M. 2021. Bacterial cellulose as a biodegradable food packaging material: a review. Food Hydrocolloids 113:106530

doi: 10.1016/j.foodhyd.2020.106530
[8]

De Kock L, Sadan Z, Arp R, Upadhyaya P. 2020. A circular economy response to plastic pollution: Current policy landscape and consumer perception. South African Journal of Science 116:1−2

doi: 10.17159/sajs.2020/8097
[9]

Chavan P, Lata K, Kaur T, Rezek Jambrak A, Sharma S, et al. 2023. Recent advances in the preservation of postharvest fruits using edible films and coatings: a comprehensive review. Food Chemistry 418:135916

doi: 10.1016/j.foodchem.2023.135916
[10]

Leyva-Jiménez FJ, Oliver-Simancas R, Castangia I, Rodríguez-García AM, Alañón ME. 2023. Comprehensive review of natural based hydrogels as an upcoming trend for food packing. Food Hydrocolloids 135:108124

doi: 10.1016/j.foodhyd.2022.108124
[11]

Tabassum, Babu A, Ahmed HS, Naik T, Bhumika KP, et al. 2024. Development of antibacterial edible films for food packaging using tragacanth gum, carrageenan, and clove essential oil. Journal of Applied Polymer Science 141(24):e55495

doi: 10.1002/app.55495
[12]

Murrieta-Martínez CL, Soto-Valdez H, Pacheco-Aguilar R, Torres-Arreola W, Rodríguez-Felix F, et al. 2018. Edible protein films: Sources and behavior. Packaging Technology and Science 31(3):113−22

doi: 10.1002/pts.2360
[13]

Milani JM, Nemati A. 2022. Lipid-based edible films and coatings: a review of recent advances and applications. Journal of Packaging Technology and Research 6(1):11−22

doi: 10.1007/s41783-021-00130-3
[14]

Liu Y, Wang R, Wang D, Sun Z, Liu F, et al. 2022. Development of a food packaging antibacterial hydrogel based on gelatin, chitosan, and 3-phenyllactic acid for the shelf-life extension of chilled chicken. Food Hydrocolloids 127:107546

doi: 10.1016/j.foodhyd.2022.107546
[15]

Olawade DB, Wada OZ, Ige AO. 2024. Advances and recent trends in plant-based materials and edible films: a mini-review. Frontiers in Chemistry 12:1441650

doi: 10.3389/fchem.2024.1441650
[16]

Rawat R, Saini CS. 2024. A novel biopolymeric composite edible film based on sunnhemp protein isolate and potato starch incorporated with clove oil: Fabrication, characterization, and amino acid composition. International Journal of Biological Macromolecules 268:131940

doi: 10.1016/j.ijbiomac.2024.131940
[17]

Alzate P, Gerschenson L, Rojas G, Flores S. 2023. Physical and antimicrobial performance of edible films based on oregano essential oil and tapioca starch emulsions. Journal of Food Measurement and Characterization 17(5):4823−33

doi: 10.1007/s11694-023-02011-6
[18]

Fitch-Vargas PR, Aguilar-Palazuelos E, Ruiz-Armenta XA, Delgado-Nieblas CI, Barraza-Elenes C, et al. 2024. Development of edible films based on reactive extrusion succinylated corn starch for the preservation of mango (Mangifera indica L.Cv. Kent). Journal of Food Measurement and Characterization 18(3):2345−58

doi: 10.1007/s11694-024-02378-0
[19]

Altan A, Özlem Ç. 2020. Encapsulation of carvacrol into ultrafine fibrous zein films via electrospinning for active packaging. Food Packaging and Shelf Life 26:100581

doi: 10.1016/j.fpsl.2020.100581
[20]

Jayakumar A, Radoor S, Kim JT, Rhim JW, Nandi D, et al. 2022. Recent innovations in bionanocomposites-based food packaging films – a comprehensive review. Food Packaging and Shelf Life 33:100877

doi: 10.1016/j.fpsl.2022.100877
[21]

Bizymis AP, Kalantzi S, Mamma D, Tzia C. 2023. Addition of silver nanoparticles to composite edible films and coatings to enhance their antimicrobial activity and application to cherry preservation. Foods 12(23):4295

doi: 10.3390/foods12234295
[22]

Anean HA, Mallasiy LO, Bader DMD, Shaat HA. 2023. Nano edible coatings and films combined with zinc oxide and pomegranate peel active phenol compounds has been to extend the shelf life of minimally processed pomegranates. Materials 16(4):1569

doi: 10.3390/ma16041569
[23]

Lei Y, Wu H, Jiao C, Jiang Y, Liu R, et al. 2019. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloids 94:128−35

doi: 10.1016/j.foodhyd.2019.03.011
[24]

Liu L, Tao L, Chen J, Zhang T, Xu J, et al. 2021. Fish oil-gelatin core-shell electrospun nanofibrous membranes as promising edible films for the encapsulation of hydrophobic and hydrophilic nutrients. LWT 146:111500

doi: 10.1016/j.lwt.2021.111500
[25]

Vieira TM, Moldão-Martins M, Alves VD. 2021. Design of chitosan and alginate emulsion-based formulations for the production of monolayer crosslinked edible films and coatings. Foods 10(7):1654

doi: 10.3390/foods10071654
[26]

Niu D, Zhang J, Zhou C, Mou L, Mchunu NP, et al. 2024. Innovative edible film for fresh fruit packaging: Formulation and characterization. Food Packaging and Shelf Life 43:101309

doi: 10.1016/j.fpsl.2024.101309
[27]

Todhanakasem T, Boonchuai P, Itsarangkoon Na Ayutthaya P, Suwapanich R, Hararak B, et al. 2022. Development of bioactive opuntia ficus-indica edible films containing probiotics as a coating for fresh-cut fruit. Polymers 14(22):5018

doi: 10.3390/polym14225018
[28]

Zhang K, Chen Q, Xiao J, You L, Zhu S, et al. 2023. Physicochemical and functional properties of chitosan-based edible film incorporated with Sargassum pallidum polysaccharide nanoparticles. Food Hydrocolloids 138:108476

doi: 10.1016/j.foodhyd.2023.108476
[29]

Chen Y, Wei F, Mu W, Han X. 2023. Antioxidant and antibacterial starch-based edible films composed of eugenol/gelatin microspheres. New Journal of Chemistry 47(9):4228−38

doi: 10.1039/D2NJ04457A
[30]

Linares-Castañeda A, Franco-Hernández MO, Gómez Y Gómez YDLM, Corzo-Rios LJ. 2024. Physical properties of zein-alginate-glycerol edible films and their application in the preservation of chili peppers (Capsicum annuum L.). Food Science and Biotechnology 33(4):889−902

doi: 10.1007/s10068-023-01393-z
[31]

Torres-García JR, Leonardo-Elias A, Angoa-Pérez MV, Villar-Luna E, Arias-Martínez S, et al. 2024. Bacillus subtilis edible films for strawberry preservation: antifungal efficacy and quality at varied temperatures. Foods 13(7):980

doi: 10.3390/foods13070980
[32]

Kaur N, Somasundram C, Razali Z, Mourad AI, Hamed F, et al. 2024. Aloe vera/chitosan-based edible film with enhanced antioxidant, antimicrobial, thermal, and barrier properties for sustainable food preservation. Polymers 16(2):242

doi: 10.3390/polym16020242
[33]

Gan L, Jiang G, Yang Y, Zheng B, Zhang S, et al. 2022. Development and characterization of levan/pullulan/chitosan edible films enriched with ε-polylysine for active food packaging. Food Chemistry 388:132989

doi: 10.1016/j.foodchem.2022.132989
[34]

Bodana V, Swer TL, Kumar N, Singh A, Samtiya M, et al. 2024. Development and characterization of pomegranate peel extract-functionalized jackfruit seed starch-based edible films and coatings for prolonging the shelf life of white grapes. International Journal of Biological Macromolecules 254:127234

doi: 10.1016/j.ijbiomac.2023.127234
[35]

Cheng Y, Zhai X, Wu Y, Li C, Zhang R, et al. 2023. Effects of natural wax types on the physicochemical properties of starch/gelatin edible films fabricated by extrusion blowing. Food Chemistry 401:134081

doi: 10.1016/j.foodchem.2022.134081
[36]

Aguilar-Palazuelos E, Fitch-Vargas PR, Delgado-Nieblas CI, López-Diaz A, Gastélum-Ávila A, et al. 2025. Edible films based on corn starch and gelatin obtained by the combination of extrusion and casting process: characterization and applications. Food Biophysics 20(1):2

doi: 10.1007/s11483-024-09891-1
[37]

Ochoa-Yepes O, Ceballos RL, Famá L. 2023. Effect of wheat and oat bran on the physicochemical properties of edible starch-based films obtained by extrusion for food packaging applications. Starch Stä rke 75(1−2):2200087

doi: 10.1002/star.202200087
[38]

Zhang H, Zhang C, Wang X, Huang Y, Xiao M, et al. 2022. Antifungal electrospinning nanofiber film incorporated with Zanthoxylum bungeanum essential oil for strawberry and sweet cherry preservation. LWT 169:113992

doi: 10.1016/j.lwt.2022.113992
[39]

Lu S, Tao J, Liu X, Wen Z. 2022. Baicalin-liposomes loaded polyvinyl alcohol-chitosan electrospinning nanofibrous films: characterization, antibacterial properties and preservation effects on mushrooms. Food Chemistry 371:131372

doi: 10.1016/j.foodchem.2021.131372
[40]

Yuan Y, Tian H, Huang R, Liu H, Wu H, Guo G, Xiao J. 2023. Fabrication and characterization of natural polyphenol and ZnO nanoparticles loaded protein-based biopolymer multifunction electrospun nanofiber films, and application in fruit preservation. Food Chemistry 418:135851

doi: 10.1016/j.foodchem.2023.135851
[41]

Chang H, Xu J, Macqueen LA, Aytac Z, Peters MM, et al. 2022. High-throughput coating with biodegradable antimicrobial pullulan fibres extends shelf life and reduces weight loss in an avocado model. Nature Food 3(6):428−36

doi: 10.1038/s43016-022-00523-w
[42]

Shen C, Wu M, Sun C, Li J, Wu D, et al. 2022. Chitosan/PCL nanofibrous films developed by SBS to encapsulate thymol/HPβCD inclusion complexes for fruit packaging. Carbohydrate Polymers 286:119267

doi: 10.1016/j.carbpol.2022.119267
[43]

Huang L, Zhang D, Bu N, Zhong Y, Tan P, et al. 2024. Pullulan nanofibrous films incorporated with W/O emulsions via microfluidic solution blow spinning technology. International Journal of Biological Macromolecules 263:130437

doi: 10.1016/j.ijbiomac.2024.130437
[44]

Leaw ZE, Kong I, Pui LP. 2021. 3D printed corn starch–gelatin film with glycerol and hawthorn berry ( Crataegus pinnatifida ) extract. Journal of Food Processing and Preservation 45:e15752

doi: 10.1111/jfpp.15752
[45]

Yap KL, Kong I, Abdul Kalam Saleena L, Pui LP. 2022. 3D Printed gelatin film with Garcinia atroviridis extract. Journal of Food Science and Technology 59(11):4341−51

doi: 10.1007/s13197-022-05508-y
[46]

Rhim JW, Mohanty AK, Singh SP, Ng PKW. 2006. Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting. Journal of Applied Polymer Science 101(6):3736−42

doi: 10.1002/app.23403
[47]

Wang LF, Rhim JW, Hong SI. 2016. Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT - Food Science and Technology 68:454−461

doi: 10.1016/j.lwt.2015.12.062
[48]

Bhedasgaonkar R. 2022. Manufacturing and mechanical properties testing of hybrid natural fibre reinforced polymer composites. International Journal for Research in Applied Science and Engineering Technology 10(6):2390−96

doi: 10.22214/ijraset.2022.43877
[49]

Tapia-Blácido DR, do Amaral Sobral PJ, Menegalli FC. 2013. Effect of drying conditions and plasticizer type on some physical and mechanical properties of amaranth flour films. LWT - Food Science and Technology 50(2):392−400

doi: 10.1016/j.lwt.2012.09.008
[50]

Flórez M, Cazón P, Vázquez M. 2023. Selected biopolymers' processing and their applications: a review. Polymers 15(3):641

doi: 10.3390/polym15030641
[51]

Calderón-Castro A, Vega-García MO, De Jesús Zazueta-Morales J, Fitch-Vargas PR, Carrillo-López A, et al. 2018. Effect of extrusion process on the functional properties of high amylose corn starch edible films and its application in mango (Mangifera indica L.) cv. Tommy Atkins. Journal of Food Science and Technology 55(3):905−14

doi: 10.1007/s13197-017-2997-6
[52]

Bamidele OP, Emmambux MN. 2021. Encapsulation of bioactive compounds by "extrusion" technologies: a review. Critical Reviews in Food Science and Nutrition 61(18):3100−118

doi: 10.1080/10408398.2020.1793724
[53]

González-Seligra P, Guz L, Ochoa-Yepes O, Goyanes S, Famá L. 2017. Influence of extrusion process conditions on starch film morphology. LWT 84:520−28

doi: 10.1016/j.lwt.2017.06.027
[54]

Pelissari FM, Yamashita F, Grossmann MVE. 2011. Extrusion parameters related to starch/chitosan active films properties. International Journal of Food Science & Technology 46(4):702−10

doi: 10.1111/j.1365-2621.2010.02533.x
[55]

Wang H, Chen X, Yang H, Wu K, Guo M, et al. 2025. A novel gelatin composite film with melt extrusion for walnut oil packaging. Food Chemistry 462:141021

doi: 10.1016/j.foodchem.2024.141021
[56]

Cheng C, Min T, Luo Y, Zhang Y, Yue J. 2023. Electrospun polyvinyl alcohol/chitosan nanofibers incorporated with 1, 8-cineole/cyclodextrin inclusion complexes: Characterization, release kinetics and application in strawberry preservation. Food Chemistry 418:135652

doi: 10.1016/j.foodchem.2023.135652
[57]

Xue J, Wu T, Dai Y, Xia Y. 2019. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chemical Reviews 119(8):5298−415

doi: 10.1021/acs.chemrev.8b00593
[58]

Chang H, Liu Q, Zimmerman JF, Lee KY, Jin Q, et al. 2022. Recreating the heart's helical structure-function relationship with focused rotary jet spinning. Science 377(6602):180−85

doi: 10.1126/science.abl6395
[59]

Cui T, Yu J, Li Q, Wang CF, Chen S, et al. 2020. Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning. Advanced Materials 32(32):2000982

doi: 10.1002/adma.202000982
[60]

Yang Z, Shen C, Zou Y, Wu D, Zhang H, et al. 2021. Application of solution blow spinning for rapid fabrication of gelatin/nylon 66 nanofibrous film. Foods 10(10):2339

doi: 10.3390/foods10102339
[61]

Lopez-Polo J, Muñoz-Shugulí C, Patiño Vidal M, Patiño Vidal C. 2024. Electrospun edible films and coatings: Development, functionality and food applications. Trends in Food Science & Technology 143:104253

[62]

Godoi FC, Prakash S, Bhandari BR. 2016. 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering 179:44−54

doi: 10.1016/j.jfoodeng.2016.01.025
[63]

Tafa KD, Satheesh N, Abera W. 2023. Mechanical properties of tef starch based edible films: Development and process optimization. Heliyon 9(2):e13160

doi: 10.1016/j.heliyon.2023.e13160
[64]

Zhao J, Liu T, Xia K, Liu X, Zhang X. 2022. Preparation and application of edible agar-based composite films modified by cellulose nanocrystals. Food Packaging and Shelf Life 34:100936

doi: 10.1016/j.fpsl.2022.100936
[65]

Yu J, Xu S, Goksen G, Yi C, Shao P. 2023. Chitosan films plasticized with choline-based deep eutectic solvents: UV shielding, antioxidant, and antibacterial properties. Food Hydrocolloids 135:108196

doi: 10.1016/j.foodhyd.2022.108196
[66]

Liu J, Wang Y, Lv J, Wu Y, Guo Y, et al. 2023. Biodegradable composite films based on egg white protein and tea polyphenol: Physicochemical, structural and antibacterial properties. Food Packaging and Shelf Life 38:101098

doi: 10.1016/j.fpsl.2023.101098
[67]

Jridi M, Abdelhedi O, Zouari N, Fakhfakh N, Nasri M. 2019. Development and characterization of grey triggerfish gelatin/agar bilayer and blend films containing vine leaves bioactive compounds. Food Hydrocolloids 89:370−78

doi: 10.1016/j.foodhyd.2018.10.039
[68]

Li R, Chen C, Chen M, Wu R, Sun Y, et al. 2023. Fabrication of carboxymethyl chitosan/oxidized carboxymethyl cellulose composite film and its assessment for coating preservation of strawberry. Journal of Food Science 88(5):1865−78

doi: 10.1111/1750-3841.16547
[69]

Rocca-Smith JR, Marcuzzo E, Karbowiak T, Centa J, Giacometti M, et al. 2016. Effect of lipid incorporation on functional properties of wheat gluten based edible films. Journal of Cereal Science 69:275−82

doi: 10.1016/j.jcs.2016.04.001
[70]

Mu C, Guo J, Li X, Lin W, Li D. 2012. Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids 27(1):22−29

doi: 10.1016/j.foodhyd.2011.09.005
[71]

Parra DF, Tadini CC, Ponce P, Lugão AB. 2004. Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydrate Polymers 58(4):475−81

doi: 10.1016/j.carbpol.2004.08.021
[72]

Roy S, Rhim JW, Jaiswal L. 2019. Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocolloids 93:156−66

doi: 10.1016/j.foodhyd.2019.02.034
[73]

Roy S, Rhim JW. 2021. Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. International Journal of Biological Macromolecules 193:2038−46

doi: 10.1016/j.ijbiomac.2021.11.035
[74]

Vidal C, Lopez-Polo J, Osorio FA. 2024. Physical properties of cellulose derivative-based edible films elaborated with liposomes encapsulating grape seed tannins. Antioxidants 13(8):989

doi: 10.3390/antiox13080989
[75]

Berti S, Jagus RJ, Flores SK, González-Martínez C. 2024. Antimicrobial edible starch films obtained by casting and thermo-compression techniques. Food and Bioprocess Technology 17(4):904−16

doi: 10.1007/s11947-023-03172-4
[76]

Shah YA, Bhatia S, Al-Harrasi A, Tarahi M, Almasi H, et al. 2024. Insights into recent innovations in barrier resistance of edible films for food packaging applications. International Journal of Biological Macromolecules 271:132354

doi: 10.1016/j.ijbiomac.2024.132354
[77]

Matloob A, Ayub H, Mohsin M, Ambreen S, Khan FA, et al. 2023. A Review on Edible Coatings and Films: Advances, Composition, Production Methods, and Safety Concerns. ACS Omega 8(32):28932−44

doi: 10.1021/acsomega.3c03459
[78]

Luangapai F, Peanparkdee M, Iwamoto S. 2019. Biopolymer films for food industries: properties, applications, and future aspects based on chitosan. Reviews in Agricultural Science 7(0):59−67

doi: 10.7831/ras.7.0_59
[79]

Neog B, Das JK, Vijayakumar A, Badwaik LS. 2022. Development and characterization of edible films made with Indian jujube fruit puree and pectin. Journal of Food Process Engineering 45(3):e13977

doi: 10.1111/jfpe.13977
[80]

Fematt-Flores GE, Aguiló-Aguayo I, Marcos B, Camargo-Olivas BA, Sánchez-Vega R, et al. 2022. Milk protein-based edible films: influence on mechanical, hydrodynamic, optical and antioxidant properties. Coatings 12(2):196

doi: 10.3390/coatings12020196
[81]

Bizymis AP, Giannou V, Tzia C. 2022. Improved properties of composite edible films based on chitosan by using cellulose nanocrystals and beta-cyclodextrin. Applied Sciences 12(17):8729

doi: 10.3390/app12178729
[82]

Liu B, Xie S, Wang J, Zhu C, Qi R, et al. 2023. Regulating structure and properties of gelatine edible film through oxidized poly(2-hydroxyethyl acrylate) crosslinking. Food Packaging and Shelf Life 37:101094

doi: 10.1016/j.fpsl.2023.101094
[83]

Bhatia S, Al-Harrasi A, Ullah S, Shah YA, Al-Azri MS, et al. 2024. Fabrication, characterization and antioxidant activities of pectin and gelatin based edible film loaded with Citrus reticulata L. essential oil. Journal of Food Process Engineering 47(4):e14583

doi: 10.1111/jfpe.14583
[84]

Shanbhag C, Shenoy R, Shetty P, Srinivasulu M, Nayak R. 2023. Formulation and characterization of starch-based novel biodegradable edible films for food packaging. Journal of Food Science and Technology 60(11):2858−67

doi: 10.1007/s13197-023-05803-2
[85]

Bhatia S, Shah YA, Al-Harrasi A, Jawad M, Koca E, et al. 2024. Novel applications of black pepper essential oil as an antioxidant agent in sodium caseinate and chitosan based active edible films. International Journal of Biological Macromolecules 254:128045

doi: 10.1016/j.ijbiomac.2023.128045
[86]

Mojo-Quisani A, Ccallo-Silva DA, Choque-Quispe D, Calla-Florez M, Ligarda-Samanez CA, et al. 2024. Development of edible films based on nostoc and modified native potato starch and their physical, mechanical, thermal, and microscopic characterization. Polymers 16(17):2396

doi: 10.3390/polym16172396
[87]

Bhatia S, Al-Harrasi A, Al-Azri MS, Ullah S, Bekhit AEA, et al. 2022. Preparation and physiochemical characterization of bitter orange oil loaded sodium alginate and casein based edible films. Polymers 14(18):3855

doi: 10.3390/polym14183855
[88]

Mulla MZ, Ahmed J, Vahora A, Pathania S. 2023. Effect of pectin incorporation on characteristics of chitosan based edible films. Journal of Food Measurement and Characterization 17(6):5569−81

doi: 10.1007/s11694-023-02047-8
[89]

Han T, Chen W, Zhong Q, Chen W, Xu Y, et al. 2023. Development and characterization of an edible zein/shellac composite film loaded with Curcumin. Foods 12(8):1577

doi: 10.3390/foods12081577
[90]

Ballesteros-Mártinez L, Pérez-Cervera C, Andrade-Pizarro R. 2020. Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS Journal 20:1−9

doi: 10.1016/j.nfs.2020.06.002
[91]

Wu L, Cui B, Dong D, Wu Z, Li J, et al. 2024. Effect of mixture microstructure/compatibility on the properties of type-A gelatin-dextran edible films. Carbohydrate Polymers 329:121733

doi: 10.1016/j.carbpol.2023.121733
[92]

Kerch G, Korkhov V. 2011. Effect of storage time and temperature on structure, mechanical and barrier properties of chitosan-based films. European Food Research and Technology 232(1):17−22

doi: 10.1007/s00217-010-1356-x
[93]

Ali Al-Maqtari Q, Ali Saeed Al-Gheethi A, Ghaleb ADS, Ali Mahdi A, Al-Ansi W, et al. 2022. Fabrication and characterization of chitosan/gelatin films loaded with microcapsules of Pulicaria jaubertii extract. Food Hydrocolloids 129:107624

doi: 10.1016/j.foodhyd.2022.107624
[94]

Radusin T, Torres-Giner S, Stupar A, Ristic I, Miletic A, et al. 2019. Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life 21:100357

doi: 10.1016/j.fpsl.2019.100357
[95]

Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J. 2016. Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. International Journal of Biological Macromolecules 89:575−81

doi: 10.1016/j.ijbiomac.2016.05.028
[96]

Correa-Pacheco ZN, Bautista-Baños S, Corona-Rangel ML, Ventura-Aguilar RI, Jiménez-Pérez JL, et al. 2024. Morphological, optical and thermal properties of bioactive-chitosan nanostructured edible films for food packaging applications. Food Biophysics 19:207−18

doi: 10.1007/s11483-023-09818-2
[97]

Gürler N. 2023. Development of chitosan/gelatin/starch composite edible films incorporated with pineapple peel extract and aloe vera gel: mechanical, physical, antibacterial, antioxidant, and sensorial analysis. Polymer Engineering & Science 63(2):426−40

doi: 10.1002/pen.26217
[98]

Zhu Q, Su X, Mai K, Huang R, Yang S, et al. 2025. Amphiphilic colloidal particles/Ca2+ reinforced edible agar nanocomposite film by multiple cross-linking/microphase separation strategies. Food Hydrocolloids 159:110602

doi: 10.1016/j.foodhyd.2024.110602
[99]

Syahputra AR, Yunus AL, Nilatany A, Oktaviani O, Nuryanthi N. 2024. Thermal properties and FTIR spectroscopy: edible film of chitosan-glycerol utilizes gamma irradiation. IOP Conference Series: Earth and Environmental Science 1388(1):012020

doi: 10.1088/1755-1315/1388/1/012020
[100]

Espinel Villacrés RA, Flores SK, Gerschenson LN. 2014. Biopolymeric antimicrobial films: Study of the influence of hydroxypropyl methylcellulose, tapioca starch and glycerol contents on physical properties. Materials Science and Engineering: C 36:108−17

doi: 10.1016/j.msec.2013.11.043
[101]

Flores SK, Costa D, Yamashita F, Gerschenson LN, Grossmann MV. 2010. Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Materials Science and Engineering: C 30(1):196−202

doi: 10.1016/j.msec.2009.10.001
[102]

Ramos M, Valdés A, Beltrán A, Garrigós M. 2016. Gelatin-based films and coatings for food packaging applications. Coatings 6(4):41

doi: 10.3390/coatings6040041
[103]

Rincón E, Serrano L, Balu AM, Aguilar JJ, Luque R, et al. 2019. Effect of bay leaves essential oil concentration on the properties of biodegradable carboxymethyl cellulose-based edible films. Materials 12(15):2356

doi: 10.3390/ma12152356
[104]

Purohit SD, Priyadarshi R, Bhaskar R, Han SS. 2023. Chitosan-based multifunctional films reinforced with cerium oxide nanoparticles for food packaging applications. Food Hydrocolloids 143:108910

doi: 10.1016/j.foodhyd.2023.108910
[105]

Tessema A, Admassu H, Dereje B. 2023. Development of edible films based on anchote (Coccinia abyssinica) starch: process optimization using response surface methodology (RSM). Journal of Food Measurement and Characterization 17(1):430−46

doi: 10.1007/s11694-022-01632-7
[106]

Mujtaba M, Salaberria AM, Andres MA, Kaya M, Gunyakti A, et al. 2017. Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films. International Journal of Biological Macromolecules 104:944−952

doi: 10.1016/j.ijbiomac.2017.06.127
[107]

Morcillo-Martín R, Rabasco-Vílchez L, Espinosa E, Pérez-Rodríguez F, Rodríguez A. 2023. Raspberry (Rubus idaeus L.) waste-derived nanocellulose for circular application in edible films and coatings. LWT 188:115438

doi: 10.1016/j.lwt.2023.115438
[108]

Nguyen TT, Huynh Nguyen TT, Tran Pham BT, Van Tran T, Bach LG, et al. 2021. Development of poly (vinyl alcohol)/agar/maltodextrin coating containing silver nanoparticles for banana (Musa acuminate) preservation. Food Packaging and Shelf Life 29:100740

doi: 10.1016/j.fpsl.2021.100740
[109]

Haq MA, Jafri FA, Hasnain A. 2016. Effects of plasticizers on sorption and optical properties of gum cordia based edible film. Journal of Food Science and Technology 53(6):2606−13

doi: 10.1007/s13197-016-2227-7
[110]

Tessaro L, Lourenço RV, Martelli-Tosi M, do Amaral Sobral PJ. 2021. Gelatin/chitosan based films loaded with nanocellulose from soybean straw and activated with "Pitanga" (Eugenia uniflora L.) leaf hydroethanolic extract in W/O/W emulsion. International Journal of Biological Macromolecules 186:328−40

doi: 10.1016/j.ijbiomac.2021.07.039
[111]

Sun X, Wang J, Dong M, Zhang H, Li L, Wang L. 2022. Food spoilage, bioactive food fresh-keeping films and functional edible coatings: research status, existing problems and development trend. Trends in Food Science & Technology 119:122−32

doi: 10.1016/j.jpgs.2021.12.004
[112]

Kumar L, Ramakanth D, Akhila K, Gaikwad KK. 2022. Edible films and coatings for food packaging applications: a review. Environmental Chemistry Letters 20(1):875−900

doi: 10.1007/s10311-021-01339-z
[113]

Ge L, Li Z, Han M, Wang Y, Li X, et al. 2022. Antibacterial dialdehyde sodium alginate/ε-polylysine microspheres for fruit preservation. Food Chemistry 387:132885

doi: 10.1016/j.foodchem.2022.132885
[114]

Kim J, Lee S, Park J, Lee JC. 2023. Preparation and properties of antibacterial polymer microspheres and their films having renewable cardanol moiety. European Polymer Journal 194:112140

doi: 10.1016/j.eurpolymj.2023.112140
[115]

Rao Z, Lei X, Chen Y, Ling J, Zhao J, et al. 2023. Facile fabrication of robust bilayer film loaded with chitosan active microspheres for potential multifunctional food packing. International Journal of Biological Macromolecules 231:123362

doi: 10.1016/j.ijbiomac.2023.123362
[116]

Liang J, Wang J, Li S, Xu L, Wang R, et al. 2019. The size-controllable preparation of chitosan/silver nanoparticle composite microsphere and its antimicrobial performance. Carbohydrate Polymers 220:22−29

doi: 10.1016/j.carbpol.2019.05.048
[117]

Yang S, Miao Q, Huang Y, Jian P, Wang X, et al. 2020. Preparation of cinnamaldehyde-loaded polyhydroxyalkanoate/chitosan porous microspheres with adjustable controlled-release property and its application in fruit preservation. Food Packaging and Shelf Life 26:100596

doi: 10.1016/j.fpsl.2020.100596
[118]

Azadi A, Rafieian F, Sami M, Rezaei A. 2023. Fabrication, characterization and antimicrobial activity of chitosan/tragacanth gum/polyvinyl alcohol composite films incorporated with cinnamon essential oil nanoemulsion. International Journal of Biological Macromolecules 245:125225

doi: 10.1016/j.ijbiomac.2023.125225
[119]

Almasi L, Radi M, Amiri S, McClements DJ. 2021. Fabrication and characterization of antimicrobial biopolymer films containing essential oil-loaded microemulsions or nanoemulsions. Food Hydrocolloids 117:106733

doi: 10.1016/j.foodhyd.2021.106733
[120]

Santos Araujo TD, da Costa JMAR, de Oliveira Silva Ribeiro F, de Jesus Oliveira AC, do Nascimento Dias J, et al. 2021. Nanoemulsion of cashew gum and clove essential oil (Ocimum gratissimum Linn.) potentiating antioxidant and antimicrobial activity. International Journal of Biological Macromolecules 193:100−8

doi: 10.1016/j.ijbiomac.2021.09.195
[121]

Chaudhary S, Kumar S, Kumar V, Sharma R. 2020. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: composition, fabrication and developments in last decade. International Journal of Biological Macromolecules 152:154−70

doi: 10.1016/j.ijbiomac.2020.02.276
[122]

Donsì F, Ferrari G. 2016. Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology 233:106−20

doi: 10.1016/j.jbiotec.2016.07.005
[123]

Kim I-H, Oh YA, Lee H, Song KB, Min SC. 2014. Grape berry coatings of lemongrass oil-incorporating nanoemulsion. LWT - Food Science and Technology 58(1):1−10

doi: 10.1016/j.lwt.2014.03.018
[124]

Falleh H, Ben Jemaa M, Neves MA, Isoda H, Nakajima M, et al. 2021. Formulation, physicochemical characterization, and anti-E. coli activity of food-grade nanoemulsions incorporating clove, cinnamon, and lavender essential oils. Food Chemistry 359:129963

doi: 10.1016/j.foodchem.2021.129963
[125]

Li X, Yang X, Deng H, Guo Y, Xue J. 2020. Gelatin films incorporated with thymol nanoemulsions: physical properties and antimicrobial activities. International Journal of Biological Macromolecules 150:161−68

doi: 10.1016/j.ijbiomac.2020.02.066
[126]

Liu X, Xue F, Li C, Adhikari B. 2022. Physicochemical properties of films produced using nanoemulsions stabilized by carboxymethyl chitosan-peptide conjugates and application in blueberry preservation. International Journal of Biological Macromolecules 202:26−36

doi: 10.1016/j.ijbiomac.2021.12.186
[127]

Zhou F, Yu L, Liu Y, Zeng Z, Li C, et al. 2023. Effect of hydroxypropyl-β-cyclodextrin and lecithin co-stabilized nanoemulsions on the konjac glucomannan/pullulan film. International Journal of Biological Macromolecules 235:123802

doi: 10.1016/j.ijbiomac.2023.123802
[128]

Yang Z, Li M, Zhai X, Zhao L, Tahir HE, et al. 2022. Development and characterization of sodium alginate/tea tree essential oil nanoemulsion active film containing TiO2 nanoparticles for banana packaging. International Journal of Biological Macromolecules 213:145−54

doi: 10.1016/j.ijbiomac.2022.05.164