| [1] |
Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, et al. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. Journal of Geophysical Research: Atmospheres 118:5380−552 doi: 10.1002/jgrd.50171 |
| [2] |
Kennedy IM. 2007. The health effects of combustion-generated aerosols. Proceedings of the Combustion Institute 31:2757−70 doi: 10.1016/j.proci.2006.08.116 |
| [3] |
Wang Y, Chung SH. 2019. Soot formation in laminar counterflow flames. Progress in Energy and Combustion Science 74:152−238 doi: 10.1016/j.pecs.2019.05.003 |
| [4] |
Michelsen HA. 2017. Probing soot formation, chemical and physical evolution, and oxidation: a review of in situ diagnostic techniques and needs. Proceedings of the Combustion Institute 36:717−35 doi: 10.1016/j.proci.2016.08.027 |
| [5] |
Richter H, Howard JB. 2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot - a review of chemical reaction pathways. Progress in Energy and Combustion Science 26:565−608 doi: 10.1016/S0360-1285(00)00009-5 |
| [6] |
Walker AP. 2004. Controlling particulate emissions from diesel vehicles. Topics in Catalysis 28:165−70 doi: 10.1023/B:TOCA.0000024346.29600.0e |
| [7] |
Du J, Su L, Zhang D, Jia C, Yuan Y. 2022. Experimental investigation into the pore structure and oxidation activity of biodiesel soot. Fuel 310:122316 doi: 10.1016/j.fuel.2021.122316 |
| [8] |
Williams S. 2008. Surface intermediates, mechanism, and reactivity of soot oxidation. Ph. D Thesis. University of Toronto, Toronto |
| [9] |
Vander Wal RL, Tomasek AJ, Pamphlet MI, Taylor CD, Thompson WK. 2004. Analysis of HRTEM images for carbon nanostructure quantification. Journal of Nanoparticle Research 6:555−68 doi: 10.1007/s11051-004-3724-6 |
| [10] |
Lapuerta M, Rodríguez-Fernández J, Sánchez-Valdepeñas J. 2020. Soot reactivity analysis and implications on diesel filter regeneration. Progress in Energy and Combustion Science 78:100833 doi: 10.1016/j.pecs.2020.100833 |
| [11] |
Raj A, Yang SY, Cha D, Tayouo R, Chung SH. 2013. Structural effects on the oxidation of soot particles by O2: Experimental and theoretical study. Combustion and Flame 160:1812−26 doi: 10.1016/j.combustflame.2013.03.010 |
| [12] |
Gogoi B, Raj A, Alrefaai MM, Stephen S, Anjana T, et al. 2015. Effects of 2, 5-dimethylfuran addition to diesel on soot nanostructures and reactivity. Fuel 159:766−75 doi: 10.1016/j.fuel.2015.07.038 |
| [13] |
Guerrero Peña GDJ, Alrefaai MM, Yang SY, Raj A, Brito JL, et al. 2016. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot. Combustion and Flame 172:1−12 doi: 10.1016/j.combustflame.2016.06.026 |
| [14] |
Raj A, Tayouo R, Cha D, Li L, Ismail MA, et al. 2014. Thermal fragmentation and deactivation of combustion-generated soot particles. Combustion and Flame 161:2446−57 doi: 10.1016/j.combustflame.2014.02.010 |
| [15] |
Raj A, da Silva GR, Chung SH. 2012. Reaction mechanism for the free-edge oxidation of soot by O2. Combustion and Flame 159:3423−36 doi: 10.1016/j.combustflame.2012.06.004 |
| [16] |
Chaparala SV, Raj A. 2016. Reaction mechanism for the oxidation of zigzag site on polycyclic aromatic hydrocarbons in soot by O2. Combustion and Flame 165:21−33 doi: 10.1016/j.combustflame.2015.09.012 |
| [17] |
Ishiguro T, Suzuki N, Fujitani Y, Morimoto H. 1991. Microstructural changes of diesel soot during oxidation. Combustion and Flame 85:1−6 doi: 10.1016/0010-2180(91)90173-9 |
| [18] |
Song J, Alam M, Boehman AL, Kim U. 2006. Examination of the oxidation behavior of biodiesel soot. Combustion and Flame 146:589−604 doi: 10.1016/j.combustflame.2006.06.010 |
| [19] |
Sediako AD, Soong C, Howe JY, Kholghy MR, Thomson MJ. 2017. Real-time observation of soot aggregate oxidation in an Environmental Transmission Electron Microscope. Proceedings of the Combustion Institute 36:841−51 doi: 10.1016/j.proci.2016.07.048 |
| [20] |
Naseri A, Sediako AD, Liu F, Barati M, Baker RD, et al. 2020. In-situ studies of O2 and O radical oxidation of carbon black using thermogravimetric analysis and environmental transmission electron microscopy. Carbon 156:299−308 doi: 10.1016/j.carbon.2019.09.039 |
| [21] |
Dadsetan M, Naseri A, Thomson MJ. 2022. Real-time observation and quantification of carbon black oxidation in an environmental transmission electron microscope: Impact of particle size and electron beam. Carbon 190:1−9 doi: 10.1016/j.carbon.2021.12.089 |
| [22] |
Gao M, Jang Y, Ding L, Gao Y, Dai S, et al. 2023. Mechanism of the noncatalytic oxidation of soot using in situ transmission electron microscopy. Nature Communications 14:6256 doi: 10.1038/s41467-023-41726-4 |
| [23] |
Botero ML, Chen D, González-Calera S, Jefferson D, Kraft M. 2016. HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels. Carbon 96:459−73 doi: 10.1016/j.carbon.2015.09.077 |
| [24] |
Schenk M, Lieb S, Vieker H, Beyer A, Gölzhäuser A, et al. 2015. Morphology of nascent soot in ethylene flames. Proceedings of the Combustion Institute 35:1879−86 doi: 10.1016/j.proci.2014.05.009 |
| [25] |
Botero ML, Eaves N, Dreyer JAH, Sheng Y, Akroyd J, et al. 2019. Experimental and numerical study of the evolution of soot primary particles in a diffusion flame. Proceedings of the Combustion Institute 37:2047−55 doi: 10.1016/j.proci.2018.06.185 |
| [26] |
Li Z, Qiu L, Cheng X, Li Y, Wu H. 2018. The evolution of soot morphology and nanostructure in laminar diffusion flame of surrogate fuels for diesel. Fuel 211:517−28 doi: 10.1016/j.fuel.2017.09.036 |
| [27] |
Gu C, Lin H, Camacho J, Lin B, Shao C, et al. 2016. Particle size distribution of nascent soot in lightly and heavily sooting premixed ethylene flames. Combustion and Flame 165:177−87 doi: 10.1016/j.combustflame.2015.12.002 |
| [28] |
Wang H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proceedings of the Combustion Institute 33:41−67 doi: 10.1016/j.proci.2010.09.009 |
| [29] |
De Falco G, Bocchicchio S, Commodo M, Minutolo P, D'Anna A. 2022. Raman spectroscopy of nascent soot oxidation: Structural analysis during heating. Frontiers in Energy Research 10:878171 doi: 10.3389/fenrg.2022.878171 |
| [30] |
Camacho J, Liu C, Gu C, Lin H, Huang Z, et al. 2015. Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame. Combustion and Flame 162:3810−22 doi: 10.1016/j.combustflame.2015.07.018 |
| [31] |
Tang Q, Ge B, Ni Q, Nie B, You X. 2018. Soot formation characteristics of n-heptane/toluene mixtures in laminar premixed burner-stabilized stagnation flames. Combustion and Flame 187:239−46 doi: 10.1016/j.combustflame.2017.08.022 |
| [32] |
Mei J, Wang M, Hou D, Tang Q, You X. 2018. Comparative study on nascent soot formation characteristics in laminar premixed acetylene, ethylene, and ethane flames. Energy & Fuels 32:11683−93 |
| [33] |
Dobbins RA, Megaridis CM. 1987. Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir 3:254−59 doi: 10.1021/la00074a019 |
| [34] |
Kholghy MR, Afarin Y, Sediako AD, Barba J, Lapuerta M, et al. 2017. Comparison of multiple diagnostic techniques to study soot formation and morphology in a diffusion flame. Combustion and Flame 176:567−83 doi: 10.1016/j.combustflame.2016.11.012 |
| [35] |
Santamaría A, Mondragón F, Molina A, Marsh ND, Eddings EG, et al. 2006. FT-IR and 1H NMR characterization of the products of an ethylene inverse diffusion flame. Combustion and Flame 146:52−62 doi: 10.1016/j.combustflame.2006.04.008 |
| [36] |
Dreyer JAH, Poli M, Eaves NA, Botero ML, Akroyd J, et al. 2019. Evolution of the soot particle size distribution along the centreline of an n-heptane/toluene co-flow diffusion flame. Combustion and Flame 209:256−66 doi: 10.1016/j.combustflame.2019.08.002 |
| [37] |
Liu P, Ahmad H, Jiang X, Chen H, Lin Y, et al. 2021. Evolution of structure and oxidation reactivity from early-stage soot to mature soot sampled from a laminar coflow diffusion flame of ethylene. Combustion and Flame 228:202−09 doi: 10.1016/j.combustflame.2021.02.004 |
| [38] |
McEnally CS, Pfefferle LD, Atakan B, Kohse-Höinghaus K. 2006. Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap. Progress in Energy and Combustion Science 32:247−94 doi: 10.1016/j.pecs.2005.11.003 |
| [39] |
Yehliu K, Vander Wal RL, Boehman AL. 2011. Development of an HRTEM image analysis method to quantify carbon nanostructure. Combustion and Flame 158:1837−51 doi: 10.1016/j.combustflame.2011.01.009 |
| [40] |
Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, et al. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520:1−19 doi: 10.1016/j.tca.2011.03.034 |
| [41] |
Doyle CD. 1962. Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science 6:639−42 doi: 10.1002/app.1962.070062406 |
| [42] |
Flynn JH, Wall LA. 1966. Genaral treatment of the thermogravimetry of polymers. Journal of Research of the National Bureau of Standards Section A, Physics and Chemistry 70:487−523 doi: 10.6028/jres.070A.043 |
| [43] |
Ozawa T. 1965. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 38:1881−86 doi: 10.1246/bcsj.38.1881 |
| [44] |
Coats AW, Redfern JP. 1964. Kinetic parameters from thermogravimetric data. Nature 201:68−69 doi: 10.1038/201068a0 |
| [45] |
López-Fonseca R, Landa I, Elizundia U, González-Ortiz MA, Gutiérrez-Velasco JR. 2006. Thermokinetic modeling of the combustion of carbonaceous particulate matter. Combustion and Flame 144:398−406 doi: 10.1016/j.combustflame.2005.08.012 |
| [46] |
Fredrik Ahlström A, Ingemar Odenbrand CU. 1989. Combustion characteristics of soot deposits from diesel engines. Carbon 27:475−83 doi: 10.1016/0008-6223(89)90080-8 |
| [47] |
McEnally CS, Pfefferle LD. 1999. Comparison of non-fuel hydrocarbon concentrations measured in coflowing nonpremixed flames fueled with small hydrocarbons. Combustion and Flame 117:362−72 doi: 10.1016/S0010-2180(98)00102-3 |
| [48] |
Wang Y, Raj A, Chung SH. 2015. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels. Combustion and Flame 162:586−96 doi: 10.1016/j.combustflame.2014.08.016 |
| [49] |
Mckinnon JT, Meyer E, Howard JB. 1996. Infrared analysis of flame-generated PAH samples. Combustion and Flame 105:161−66 doi: 10.1016/0010-2180(95)00185-9 |
| [50] |
Wei J, Song C, Lv G, Song J, Wang L, et al. 2015. A comparative study of the physical properties of in-cylinder soot generated from the combustion of n-heptane and toluene/n-heptane in a diesel engine. Proceedings of the Combustion Institute 35:1939−46 doi: 10.1016/j.proci.2014.06.011 |
| [51] |
Sharma HN, Pahalagedara L, Joshi A, Suib SL, Mhadeshwar AB. 2012. Experimental study of carbon black and diesel engine soot oxidation kinetics using thermogravimetric analysis. Energy & Fuels 26:5613−25 |
| [52] |
Dobbins RA, Govatzidakis GJ, Lu W, Schwartzman AF, Fletcher RA. 1996. Carbonization rate of soot precursor particles. Combustion Science and Technology 121:103−21 doi: 10.1080/00102209608935589 |
| [53] |
Frenklach M, Wang H. 1991. Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion 23:1559−66 doi: 10.1016/S0082-0784(06)80426-1 |
| [54] |
Al-Qurashi K, Boehman AL. 2008. Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot. Combustion and Flame 155:675−95 doi: 10.1016/j.combustflame.2008.06.002 |
| [55] |
Smith WR, Polley MH. 1956. The oxidation of graphitized carbon black. Journal of Physical Chemistry 60:689−91 doi: 10.1021/j150539a046 |
| [56] |
Stanmore BR, Brilhac JF, Gilot P. 2001. The oxidation of soot: A review of experiments, mechanisms and models. Carbon 39:2247−68 doi: 10.1016/S0008-6223(01)00109-9 |
| [57] |
Zhang Y, Boehman AL. 2013. Oxidation behavior of soot generated from the combustion of methyl 2-butenoate in a co-flow diffusion flame. Combustion and Flame 160:112−19 doi: 10.1016/j.combustflame.2012.08.010 |
| [58] |
Chen N, Yang RT. 1998. Ab initio molecular orbital study of the unified mechanism and pathways for gas-carbon reactions. Journal of Physical Chemistry A 102:6348−56 doi: 10.1021/jp981518g |
| [59] |
Liu P, Ahmad H, Mei B, Jiang S, You B, et al. 2021. Effects of devolatilization temperature on chemical structure and oxidation reactivity of soot sampled from a coflow diffusion ethylene flame. Fuel 293:120424 doi: 10.1016/j.fuel.2021.120424 |
| [60] |
Singh R, Frenklach M. 2016. A mechanistic study of the influence of graphene curvature on the rate of high-temperature oxidation by molecular oxygen. Carbon 101:203−12 doi: 10.1016/j.carbon.2016.01.090 |
| [61] |
Singh RI, Mebel AM, Frenklach M. 2015. Oxidation of graphene-edge six- and five-member rings by molecular oxygen. The Journal of Physical Chemistry A 119:7528−47 doi: 10.1021/acs.jpca.5b00868 |