[1] |
Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, et al. 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution 1:1285−91 doi: 10.1038/s41559-017-0248-x |
[2] |
Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J, et al. 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208:674−83 doi: 10.1111/nph.13477 |
[3] |
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, et al. 2018. Triggers of tree mortality under drought. Nature 558:531−39 doi: 10.1038/s41586-018-0240-x |
[4] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, et al. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178:719−39 doi: 10.1111/j.1469-8137.2008.02436.x |
[5] |
Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:1−55 doi: 10.1890/ES15-00203.1 |
[6] |
Hammond WM, Williams AP, Abatzoglou JT, Adams HD, Klein T, et al. 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth's forests. Nature Communications 13:1761 doi: 10.1038/s41467-022-29289-2 |
[7] |
Gessler A, Schaub M, McDowell NG. 2017. The role of nutrients in drought-induced tree mortality and recovery. New Phytologist 214:513−20 doi: 10.1111/nph.14340 |
[8] |
Kreuzwieser J, Gessler A. 2010. Global climate change and tree nutrition: influence of water availability. Tree Physiology 30:1221−34 doi: 10.1093/treephys/tpq055 |
[9] |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660−84 doi: 10.1016/j.foreco.2009.09.001 |
[10] |
Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, et al. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20:30−59 doi: 10.1890/08-1140.1 |
[11] |
Dziedek C, von Oheimb G, Calvo L, Fichtner A, Kriebitzsch WU, et al. 2016. Does excess nitrogen supply increase the drought sensitivity of European beech (Fagus sylvatica L.) seedlings? Plant Ecology 217:393−405 doi: 10.1007/s11258-016-0581-1 |
[12] |
Meyer-Grünefeldt M, Calvo L, Marcos E, Von Oheimb G, Härdtle W. 2015. Impacts of drought and nitrogen addition on Calluna heathlands differ with plant life-history stage. Journal of Ecology 103:1141−52 doi: 10.1111/1365-2745.12446 |
[13] |
Tong R, Wen Y, Wang J, Lou C, Ma C, et al. 2022. Root nutrient capture and leaf resorption efficiency modulated by different influential factors jointly alleviated P limitation in Quercus acutissima across the North–South Transect of Eastern China. Forestry Research 2:7 doi: 10.48130/FR-2022-0007 |
[14] |
Song J, Wang Y, Pan Y, Pang J, Zhang X, et al. 2019. The influence of nitrogen availability on anatomical and physiological responses of Populus alba × P. glandulosa to drought stress. BMC Plant Biology 19:63 doi: 10.1186/s12870-019-1667-4 |
[15] |
Zhang H, Li X, Guan D, Wang A, Yuan F, et al. 2021. Nitrogen nutrition addition mitigated drought stress by improving carbon exchange and reserves among two temperate trees. Agricultural and Forest Meteorology 311:108693 doi: 10.1016/j.agrformet.2021.108693 |
[16] |
Schönbeck L, Gessler A, Schaub M, Rigling A, Hoch G, et al. 2020. Soil nutrients and lowered source: sink ratio mitigate effects of mild but not of extreme drought in trees. Environmental and Experimental Botany 169:103905 doi: 10.1016/j.envexpbot.2019.103905 |
[17] |
Li S, Zhou L, Addo-Danso SD, Ding G, Sun M, et al. 2020. Nitrogen supply enhances the physiological resistance of Chinese fir plantlets under polyethylene glycol (PEG)-induced drought stress. Scientific Reports 10:7509 doi: 10.1038/s41598-020-64161-7 |
[18] |
Jacobs DF, Rose R, Haase DL, Alzugaray PO. 2004. Fertilization at planting impairs root system development and drought avoidance of Douglas-fir (Pseudotsuga menziesii) seedlings. Annals of Forest Science 61:643−51 doi: 10.1051/forest:2004065 |
[19] |
Li W, Zhang H, Huang G, Liu R, Wu H, et al. 2020. Effects of nitrogen enrichment on tree carbon allocation: a global synthesis. Global Ecology and Biogeography 29:573−89 doi: 10.1111/geb.13042 |
[20] |
Huang J, Wang X, Zheng M, Mo J. 2021. 13-year nitrogen addition increases nonstructural carbon pools in subtropical forest trees in southern China. Forest Ecology and Management 481:118748 doi: 10.1016/j.foreco.2020.118748 |
[21] |
Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, et al. 2014. Nonstructural carbon in woody plants. Annual Review of Plant Biology 65:667−87 doi: 10.1146/annurev-arplant-050213-040054 |
[22] |
Hoch G, Richter A, Körner C. 2003. Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment 26:1067−81 doi: 10.1046/j.0016-8025.2003.01032.x |
[23] |
Körner C. 2003. Carbon limitation in trees. Journal of Ecology 91:4−17 doi: 10.1046/j.1365-2745.2003.00742.x |
[24] |
Wang QW, Qi L, Zhou W, Liu CG, Yu D, et al. 2018. Carbon dynamics in the deciduous broadleaf tree Erman's birch (Betula ermanii) at the subalpine treeline on Changbai Mountain, Northeast China. American Journal of Botany 105:42−49 doi: 10.1002/ajb2.1006 |
[25] |
Wang QW, Liu CG, Zhou W, Qi L, Zhou L, et al. 2018. Mobile carbon supply in trees and shrubs at the alpine treeline ecotone. Plant Ecology 219:467−79 doi: 10.1007/s11258-018-0809-3 |
[26] |
Tang X, Zhao X, Bai Y, Tang Z, Wang W, et al. 2018. Carbon pools in China's terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America 115:4021−26 doi: 10.1073/pnas.1700291115 |
[27] |
Xie H, Yu M, Cheng X. 2018. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species. Plant Physiology and Biochemistry 124:146−54 doi: 10.1016/j.plaphy.2018.01.013 |
[28] |
Han X, Zhao Y, Chen Y, Xu J, Jiang C, et al. 2022. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. Forestry Research 2:9 doi: 10.48130/FR-2022-0009 |
[29] |
Hartmann H, Adams HD, Hammond WM, Hoch G, Landhäusser SM, et al. 2018. Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests. Environmental and Experimental Botany 152:7−18 doi: 10.1016/j.envexpbot.2018.03.011 |
[30] |
Sevanto S, Mcdowell NG, Dickman LT, Pangle R, Pockman WT. 2014. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment 37:153−61 doi: 10.1111/pce.12141 |
[31] |
Silva EN, Ferreira-Silva SL, Viégas RA, Silveira JAG. 2010. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants. Environmental and Experimental Botany 69:279−85 doi: 10.1016/j.envexpbot.2010.05.001 |
[32] |
Ouyang SN, Gessler A, Saurer M, Hagedorn F, Gao DC, et al. 2021. Root carbon and nutrient homeostasis determines downy oak sapling survival and recovery from drought. Tree Physiology 41:1400−12 doi: 10.1093/treephys/tpab019 |
[33] |
Wang X, Schönbeck L, Gessler A, Yang Y, Rigling A, et al. 2022. The effects of previous summer drought and fertilization on winter non-structural carbon reserves and spring leaf development of downy oak saplings. Frontiers in Plant Science 13:1035191 doi: 10.3389/fpls.2022.1035191 |
[34] |
Tomasella M, Casolo V, Aichner N, Petruzzellis F, Savi T, et al. 2019. Non-structural carbohydrate and hydraulic dynamics during drought and recovery in Fraxinus ornus and Ostrya carpinifolia saplings. Plant Physiology and Biochemistry 145:1−9 doi: 10.1016/j.plaphy.2019.10.024 |
[35] |
Wiley E. 2020. Do carbon reserves increase tree survival during stress and following disturbance? Current Forestry Reports 6:14−25 doi: 10.1007/s40725-019-00106-2 |
[36] |
Furze ME, Trumbore S, Hartmann H. 2018. Detours on the phloem sugar highway: stem carbon storage and remobilization. Current Opinion in Plant Biology 43:89−95 doi: 10.1016/j.pbi.2018.02.005 |
[37] |
Furze ME, Huggett BA, Aubrecht DM, Stolz CD, Carbone MS. 2019. Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytologist 221:1466−77 doi: 10.1111/nph.15462 |
[38] |
Herrera-Ramírez D, Sierra CA, Römermann C, Muhr J, Trumbore S, et al. 2021. Starch and lipid storage strategies in tropical trees relate to growth and mortality. New Phytologist 230:139−54 doi: 10.1111/nph.17239 |
[39] |
Martínez-Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, et al. 2016. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs 86:495−516 doi: 10.1002/ecm.1231 |
[40] |
Liu Z, Hikosaka K, Li F, Jin G. 2020. Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors. Functional Ecology 34:458−67 doi: 10.1111/1365-2435.13498 |
[41] |
Piper FI, Paula S. 2020. The role of nonstructural carbohydrates storage in forest resilience under climate change. Current Forestry Reports 6:1−13 doi: 10.1007/s40725-019-00109-z |
[42] |
Delpierre N, Berveiller D, Granda E, Dufrêne E. 2016. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytologist 210:459−70 doi: 10.1111/nph.13771 |
[43] |
Granier A, Anfodillo T, Sabatti M, Cochard H, Dreyer E, et al. 1994. Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis. Tree Physiology 14:1383−96 doi: 10.1093/treephys/14.12.1383 |
[44] |
Pérez-De-Lis G, García-González I, Rozas V, Olano JM. 2016. Feedbacks between earlywood anatomy and non-structural carbohydrates affect spring phenology and wood production in ring-porous oaks. Biogeosciences 13:5499−510 doi: 10.5194/bg-13-5499-2016 |
[45] |
Ma T, Liang Y, Li Z, Liu Z, Liu B, et al. 2023. Age-related patterns and climatic driving factors of drought-induced forest mortality in Northeast China. Agricultural and Forest Meteorology 332:109360 doi: 10.1016/j.agrformet.2023.109360 |
[46] |
Mgelwa AS, Zhu F, Huang D, Song L, Wang Y, et al. 2024. Patterns and drivers of atmospheric inorganic nitrogen deposition in Northeast Asia. Journal of Environmental Management 349:119343 doi: 10.1016/j.jenvman.2023.119343 |
[47] |
Yu D, Zhou L, Zhou W, Ding H, Wang Q, et al. 2011. Forest management in Northeast China: history, problems, and challenges. Environmental Management 48:1122−35 doi: 10.1007/s00267-011-9633-4 |
[48] |
Galvez DA, Landhäusser SM, Tyree MT. 2013. Low root reserve accumulation during drought may lead to winter mortality in poplar seedlings. New Phytologist 198:139−48 doi: 10.1111/nph.12129 |
[49] |
Wong SC. 1990. Elevated Atmospheric Partial Pressure of CO2 and Plant Growth - II. Non-structural carbohydrate content in cotton plants and its effect on growth parameters. Photosynthesis Research 23:171−80 doi: 10.1007/BF00035008 |
[50] |
Hoch G, Popp M, Körner C. 2002. Altitudinal increase of mobile carbon pools in Pinus cembra Suggests sink limitation of growth at the Swiss treeline. Oikos 98:361−74 doi: 10.1034/j.1600-0706.2002.980301.x |
[51] |
Schönbeck L, Gessler A, Hoch G, McDowell NG, Rigling A, et al. 2018. Homeostatic levels of nonstructural carbohydrates after 13 yr of drought and irrigation in Pinus sylvestris. New Phytologist 219:1314−24 doi: 10.1111/nph.15224 |
[52] |
Weber R, Schwendener A, Schmid S, Lambert S, Wiley E, et al. 2018. Living on next to nothing: tree seedlings can survive weeks with very low carbohydrate concentrations. New Phytologist 218:107−18 doi: 10.1111/nph.14987 |
[53] |
Norouzian R, Plonsky L. 2018. Eta- and partial eta-squared in L2 research: a cautionary review and guide to more appropriate usage. Second Language Research 34:257−71 doi: 10.1177/0267658316684904 |
[54] |
Moustafa MAM, Mohamed WMA, Lau ACC, Chatanga E, Qiu Y, et al. 2020. R: a language and environment for statistical computing, R foundation for statistical computing. 20:1979−92 |
[55] |
Kassambara A, Mundt F. 2020. Extract and visualize the results of multivariate data analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra |
[56] |
Palacio S, Hoch G, Sala A, Körner C, Millard P. 2014. Does carbon storage limit tree growth? New Phytologist 201:1096−100 doi: 10.1111/nph.12602 |
[57] |
Tixier A, Gambetta GA, Godfrey J, Orozco J, Zwieniecki MA. 2019. Non-Structural carbohydrates in dormant woody perennials; the tale of winter survival and spring arrival. Frontiers in Forests and Global Change 2:18 doi: 10.3389/ffgc.2019.00018 |
[58] |
Secchi F, Zwieniecki MA. 2011. Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant, Cell & Environment 34:514−24 doi: 10.1111/j.1365-3040.2010.02259.x |
[59] |
Klein T, Hoch G, Yakir D, Körner C. 2014. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiology 34:981−92 doi: 10.1093/treephys/tpu071 |
[60] |
Barker Plotkin A, Blumstein M, Laflower D, Pasquarella VJ, Chandler JL, et al. 2021. Defoliated trees die below a critical threshold of stored carbon. Functional Ecology 35:2156−67 doi: 10.1111/1365-2435.13891 |
[61] |
Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, et al. 2016. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. The Plant Cell 28:1860−78 doi: 10.1105/tpc.16.00143 |
[62] |
Thalmann M, Santelia D. 2017. Starch as a determinant of plant fitness under abiotic stress. New Phytologist 214:943−51 doi: 10.1111/nph.14491 |
[63] |
Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD. 2000. Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems 3:57−69 doi: 10.1007/s100210000010 |
[64] |
Villar-Salvador P, Peñuelas JL, Jacobs DF. 2013. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. Seedlings. Tree Physiology 33:221−32 doi: 10.1093/treephys/tps133 |
[65] |
Wang AY, Wang M, Yang D, Song J, Zhang WW, et al. 2016. Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in Fraxinus mandshurica. Tree Physiology 36:1045−55 doi: 10.1093/treephys/tpw048 |
[66] |
Sapes G, Demaree P, Lekberg Y, Sala A. 2021. Plant carbohydrate depletion impairs water relations and spreads via ectomycorrhizal networks. New Phytologist 229:3172−83 doi: 10.1111/nph.17134 |
[67] |
Kannenberg SA, Novick KA, Phillips RP. 2018. Coarse roots prevent declines in whole-tree non-structural carbohydrate pools during drought in an isohydric and an anisohydric species. Tree Physiology 38:582−90 doi: 10.1093/treephys/tpx119 |
[68] |
Hacke UG, Sperry JS, Wheeler JK, Castro L. 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology 26:689−701 doi: 10.1093/treephys/26.6.689 |
[69] |
Cai J, Tyree MT. 2010. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant, Cell & Environment 33:1059−69 doi: 10.1111/j.1365-3040.2010.02127.x |
[70] |
Reich PB. 2014. The world-wide 'fast–Slow' plant economics spectrum: a traits manifesto. Journal of Ecology 102:275−301 doi: 10.1111/1365-2745.12211 |
[71] |
Jin Y, Wang C, Zhou Z, Gu J. 2021. Leaf hydraulic traits of larch and ash trees in response to long-term nitrogen addition in northeastern China. Journal of Plant Ecology 14:1105−14 doi: 10.1093/jpe/rtab054 |
[72] |
Mitchell PJ, O'Grady AP, Tissue DT, Worledge D, Pinkard EA. 2014. Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. Tree Physiology 34:443−58 doi: 10.1093/treephys/tpu014 |
[73] |
Niinemets Ü. 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management 260:1623−39 doi: 10.1016/j.foreco.2010.07.054 |
[74] |
Petit RJ, Hampe A. 2006. Some evolutionary consequences of being a tree. Annual Review of Ecology, Evolution and Systematics 37:187−214 doi: 10.1146/annurev.ecolsys.37.091305.110215 |
[75] |
Sala A, Woodruff DR, Meinzer FC. 2012. Carbon dynamics in trees: feast or famine? Tree Physiologist 32:764−75 doi: 10.1093/treephys/tpr143 |
[76] |
Piper FI, Hoch G, Fajardo A. 2019. Revisiting the relative growth rate hypothesis for gymnosperm and angiosperm species co-occurrence. American Journal of Botany 106:101−12 doi: 10.1002/ajb2.1221 |
[77] |
Han Y, Deng J, Zhou W, Wang QW, Yu D. 2022. Seasonal responses of hydraulic function and carbon dynamics in spruce seedlings to continuous drought. Frontiers in Plant Science 13:868108 doi: 10.3389/fpls.2022.868108 |