[1]

Manzoor A, Bashir MA, Naveed MS, Cheema KL, Cardarelli M. 2021. Role of different abiotic factors in inducing pre-harvest physiological disorders in radish (Raphanus sativus). Plants 10:2003

doi: 10.3390/plants10102003
[2]

Yu H, Wang J, Zhao Z, Sheng X, Shen Y, et al. 2019. Construction of a high-density genetic map and identification of loci related to hollow stem trait in broccoli (Brassic oleracea L. italica). Frontiers in Plant Science 10:45

doi: 10.3389/fpls.2019.00045
[3]

Li J, Gu C, Yuan Y, Gao Z, Qin Z, et al. 2024. Comparative transcriptome analysis revealed that auxin and cell wall biosynthesis play important roles in the formation of hollow hearts in cucumber. BMC Genomics 25:36

doi: 10.1186/s12864-024-09957-x
[4]

Zorrilla C, Navarro F, Vega-Semorile S, Palta J. 2021. QTL for pitted scab, hollow heart, and tuber calcium identified in a tetraploid population of potato derived from an Atlantic × Superior cross. Crop Science 61:1630−51

doi: 10.1002/csc2.20388
[5]

Trandel MA, Perkins-Veazie P, Schultheis J. 2020. Predicting hollow heart incidence in triploid watermelon (Citrullus lanatus). HortScience 55:1926−30

doi: 10.21273/HORTSCI15361-20
[6]

Devi P, Perkins-Veazie P, Miles C. 2020. Impact of grafting on watermelon fruit maturity and quality. Horticulturae 6:97

doi: 10.3390/horticulturae6040097
[7]

Kano Y. 1993. Relationship between the occurrence of hollowing in watermelon and the size and the number of fruit cells and intercellular air spaces. Journal of the Japanese Society for Horticultural Science 62:103−12

doi: 10.2503/jjshs.62.103
[8]

Hattori Y, Nagai K, Furukawa S, Song X, Kawano R, et al. 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026−30

doi: 10.1038/nature08258
[9]

Trandel MA, Johanningsmeier S, Schultheis J, Gunter C, Perkins-Veazie P. 2021. Cell wall polysaccharide composition of grafted 'liberty' watermelon with reduced incidence of hollow heart defect. Frontiers in Plant Science 12:623723

doi: 10.3389/fpls.2021.623723
[10]

Van Denburgh RW, Hiller LK, Koller DC. 1979. Cool temperature induction of brown center in 'russet burbank' potatoes. HortScience 14:259−60

doi: 10.21273/HORTSCI.14.3.259
[11]

Nelson DC, Jones DA, Thoreson MC. 1979. Relationships between weather, plant spacing and the incidence of hollow heart in Norgold Russet potatoes. American Potato Journal 56:581−86

doi: 10.1007/BF02853988
[12]

Moretti CL, Mattos LM, Calbo AG, Sargent SA. 2010. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: a review. Food Research International 43:1824−32

doi: 10.1016/j.foodres.2009.10.013
[13]

Kano Y, Fukuoka N. 1996. Role of endogenous cytokinin in the development of hollowing in the root of Japanese radish (Raphanus sativus L.). Scientia Horticulturae 65:105−15

doi: 10.1016/0304-4238(95)00853-5
[14]

Halligan EA. 1986. The effect of elevated temperatures and their duration on the incidence of hollow heart in pea seeds. Annals of Applied Biology 109:619−25

doi: 10.1111/j.1744-7348.1986.tb03219.x
[15]

Shinohara T, Hampton JG, Hill MJ. 2006. Effects of the field environment before and after seed physiological maturity on hollow heart occurrence in garden pea (Pisum sativum). New Zealand Journal of Crop and Horticultural Science 34:247−55

doi: 10.1080/01140671.2006.9514414
[16]

Bussan AJ. 2007. The canon of potato science: 45. brown centre and hollow heart. Potato Research 50:395−98

doi: 10.1007/s11540-008-9087-0
[17]

Rex BL, Mazza G. 1989. Cause, control and detection of hollow heart in potatoes: a review. American Potato Journal 66:165−83

doi: 10.1007/BF02853679
[18]

Sharma AK, Sandhu AK, Sidhu SK, Griffin WD, Kaur N, et al. 2023. Potato (Solanum tuberosum L.) yield response to different sulfur rates and sources. HortScience 58:47−54

doi: 10.21273/HORTSCI16870-22
[19]

Rens LR, Zotarelli L, Cantliffe DJ, Stoffella PJ, Gergela D, et al. 2015. Biomass accumulation, marketable yield, and quality of atlantic potato in response to nitrogen. Agronomy Journal 107:931−42

doi: 10.2134/agronj14.0408
[20]

Sanders DC, Nylund RE. 1972. The influence of mist irrigation on the potato: II. growth and development. American Potato Journal 49:187−95

doi: 10.1007/BF02864738
[21]

Schultheis JR, Dufault RJ. 1994. Watermelon seedling growth, fruit yield, and quality following pretransplant nutritional conditioning. HortScience 29:1264−68

doi: 10.21273/HORTSCI.29.11.1264
[22]

Akoumianakis KA, Karapanos IC, Giakoumaki M, Alexopoulos AA, Passam HC. 2011. Nitrogen, season and cultivar affect radish growth, yield, sponginess and hollowness. International Journal of Plant Production 5:111−19

[23]

Kaymak HÇ, Güvenç İ, Gürol A. 2010. Correlation between endogenous elements and development of hollowing in the root of radish (Raphanus sativus L.) cultivars. Žemdirbystė=Agriculture 97:74−104

[24]

Suh HY, Yoo KS, Suh SG. 2014. Tuber growth and quality of potato (Solanum tuberosum L.) as affected by foliar or soil application of fulvic and humic acids. Horticulture, Environment, and Biotechnology 55:183−89

doi: 10.1007/s13580-014-0005-x
[25]

Nelson DC. 1970. Effect of planting date, spacing, and potassium on hollow heart in Norgold Russet potatoes. American Potato Journal 47:130−35

doi: 10.1007/BF02871093
[26]

Van der Zaag K, Ffrench S. 1987. Preliminary evaluations of foliar calcium applications with respect to yield and processing quality of the potato cultivars Atlantic and Norchip. Ontario Potato Cultivar Evaluation Association Bulletin 2:3−5

[27]

Palta JP. 2010. Improving potato tuber quality and production by targeted calcium nutrition: the discovery of tuber roots leading to a new concept in potato nutrition. Potato Research 53:267−75

doi: 10.1007/s11540-010-9163-0
[28]

Karlsson BH, Palta JP, Crump PM. 2006. Enhancing tuber calcium concentration may reduce incidence of blackspot bruise injury in potatoes. HortScience 41:1213−21

doi: 10.21273/HORTSCI.41.5.1213
[29]

Shattuck VI, Shelp BJ. 1987. Effect of boron nutrition on hollow stem in broccoli (Brassica oleracea var. italica). Canadian Journal of Plant Science 67:1221−25

doi: 10.4141/cjps87-160
[30]

Boersma M, Gracie AJ, Brown PH. 2013. Evidence of mechanical tissue strain in the development of hollow stem in broccoli. Scientia Horticulturae 164:353−58

doi: 10.1016/j.scienta.2013.09.020
[31]

Fukuoka N, Kano Y. 1992. The difference in the development of hollowness in roots of 'Gensuke' radish between the early and late sowing of seeds. Journal of the Japanese Society for Horticultural Science 60:881−87

doi: 10.2503/jjshs.60.881
[32]

Dittmar PJ, Monks DW, Schultheis JR. 2010. Use of commercially available pollenizers for optimizing triploid watermelon production. HortScience 45:541−45

doi: 10.21273/HORTSCI.45.4.541
[33]

Zhang X, Xie C, Hu X, Yu X, Zhu S, et al. 2012. Dynamic changes of tumorous stem yield and hollow heart in tumorous stem mustard under different cultivations. Southwest China Journal of Agricultural Sciences 25:1606−08

doi: 10.3969/j.issn.1001-4829.2012.05.013
[34]

Fukuoka N, Kano Y. 1997. Relationship between the development of hollowing and the separation of vessel sectors in the central region of the root of Japanese radish (Raphanus sativus L.). Scientia Horticulturae 68:59−72

doi: 10.1016/S0304-4238(96)00962-4
[35]

Sanderson KR, Fillmore SAE. 2010. Response of broccoli (Brassica oleracea var. italica) yield and hollow stem to plant density, trickle irrigation and transplanting date. Canadian Journal of Plant Science 90:729−35

doi: 10.4141/CJPS09167
[36]

Devi P, Perkins-Veazie P, Miles CA. 2020. Rootstock and plastic mulch effect on watermelon flowering and fruit maturity in a Verticillium dahliae-infested field. HortScience 55:1438−45

doi: 10.21273/HORTSCI15134-20
[37]

McGregor CE, Waters V. 2014. Flowering patterns of pollenizer and triploid watermelon cultivars. HortScience 49:714−21

doi: 10.21273/HORTSCI.49.6.714
[38]

Fiacchino DC, Walters SA. 2003. Influence of diploid pollinizer frequencies on triploid watermelon quality and yields. HortTechnology 13:58−61

doi: 10.21273/HORTTECH.13.1.0058
[39]

Qin Z, Gu C, Yuan Y, Li X, Xin M. 2022. Evaluation of hollow trait in cucumber germplasm resources. Journal of Northeast Agricultural University 53:19−28

doi: 10.3969/j.issn.1005-9369.2022.11.003
[40]

Fan C, Tian L, Shang S, Ma L, Yang Y. 2022. Relationship between endogenous hormones and fruit hollowness in cucumber fruit. Journal of Southern Argiculture 53:3174−83

doi: 10.3969/j.issn.2095-1191.2022.11.018
[41]

Hiller LK, Koller DC. 1984. Effect of early season soil moisture levels and growth regulator applications on internal quality of Russet Burbank potato tubers. Proc. 23rd Annual Washington State Potato Conference and Trade Fair, Washington, 1984, 23: 67−73. Washington: Washington State Potato Commission

[42]

Kano Y, Fukuoka N. 1996. Effects of auxin application on the lignification of xylem parenchymatous cells and the development of hollowness in the root of Japanese radish (Raphanus sativus L.). Journal of Horticultural Science 71:791−99

doi: 10.1080/14620316.1996.11515460
[43]

Kano Y, Fukuoka N. 1996. Suppressive effects of CPPU on lignification of xylem parenchymatous cells and on hollowing in the root of Japanese radish (Raphanus sativus L.). Scientia Horticulturae 65:117−24

doi: 10.1016/0304-4238(95)00854-3
[44]

Fukuoka N. 2007. Effect of cytokinin and auxin application on vessel differentiation and development of hollow cavity in the roots of Japanese radish (Raphanus sativus L.). Journal of the Japanese Society for Horticultural Science 76:310−15

doi: 10.2503/jjshs.76.310
[45]

Maroto JV, Miguel A, Lopez-Galarza S, San Bautista A, Pascual B, et al. 2005. Parthenocarpic fruit set in triploid watermelon induced by CPPU and 2,4-D applications. Plant Growth Regulation 45:209−13

doi: 10.1007/s10725-005-3992-x
[46]

Hsu HC, Chen WL. 2024. CPPU improves fruit setting and growth in greenhouse-grown oriental melons (Cucumis melo L. var. makuwa Makino). HortScience 59:340−47

doi: 10.21273/HORTSCI17594-23
[47]

Bradshaw JE, Hackett CA, Pande B, Waugh R, Bryan GJ. 2008. QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theoretical and Applied Genetics 116:193−211

doi: 10.1007/s00122-007-0659-1
[48]

Caruth TF. 1975. A genetic study of the inheritance of rupturing carpel in fruit of cucumber Cucumis sativus L. Texas A&M University, US.

[49]

Wilson JE, Baker LR. 1976. Inheritance of carpel separation in mature fruits of pickling cucumbers. Journal of the American Society for Horticultural Science 101:66−69

doi: 10.21273/JASHS.101.1.66
[50]

Wang Y, Jiang B, Dymerski R, Xu X, Weng Y. 2021. Quantitative trait loci for horticulturally important traits defining the Sikkim cucumber, Cucumis sativus var. sikkimensis. Theoretical and Applied Genetics 134:229−47

doi: 10.1007/s00122-020-03693-y
[51]

Zhou G, Chen C, Liu X, Yang K, Wang C, et al. 2022. The formation of hollow trait in cucumber (Cucumis sativus L.) fruit is controlled by CsALMT2. International Journal of Molecular Sciences 23:6173

doi: 10.3390/ijms23116173
[52]

Wei D, Zhang C, Ran M, Wu J, Li X, et al. 2024. A novel SNP within the Rsa10025320 gene is highly associated with hollowness in red-skinned radish fleshy roots. Theoretical and Applied Genetics 137:242

doi: 10.1007/s00122-024-04747-1
[53]

Graças JP, Belloti M, Lima JE, Peres LEP, Burlat V, et al. 2021. Low pH-induced cell wall disturbances in Arabidopsis thaliana roots lead to a pattern-specific programmed cell death in the different root zones and arrested elongation in late elongation zone. Environmental and Experimental Botany 190:104596

doi: 10.1016/j.envexpbot.2021.104596
[54]

Cheng NH, Pittman JK, Shigaki T, Lachmansingh J, LeClere S, et al. 2005. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiology 138:2048−60

doi: 10.1104/pp.105.061218
[55]

Zorrilla C, Schabow JE, Chernov V, Palta JP. 2019. CAX1 vacuolar antiporter overexpression in potato results in calcium deficiency in leaves and tubers by sequestering calcium as calcium oxalate. Crop Science 59:176−89

doi: 10.2135/cropsci2018.06.0355
[56]

Kubicki B, Korzeniewska A. 1983. Inheritance of the presence of empty chambers in fruit as related to other fruit characters in cucumbers (Cucumis sativus L.). Genetica Polonica 24:327−42

[57]

Chung K, Demianski AJ, Harrison GA, Laurie-Berry N, Mitsuda N, et al. 2022. Jasmonate Hypersensitive 3 negatively regulates both jasmonate and ethylene-mediated responses in Arabidopsis. Journal of Experimental Botany 73:5067−83

doi: 10.1093/jxb/erac208
[58]

Takuma A, Abe A, Saito Y, Nito C, Ueda M, et al. 2017. Gene expression analysis of the effect of ischemic infarction in whole blood. International Journal of Molecular Sciences 18:2335

doi: 10.3390/ijms18112335
[59]

Liu B, Liu X, Yang S, Chen C, Xue S, et al. 2016. Silencing of the gibberellin receptor homolog, CsGID1a, affects locule formation in cucumber (Cucumis sativus) fruit. New Phytologist 210:551−63

doi: 10.1111/nph.13801
[60]

Cheng Z, Song X, Liu X, Yan S, Song W, et al. 2022. SPATULA and ALCATRAZ confer female sterility and fruit cavity via mediating pistil development in cucumber. Plant Physiology 189:1553−69

doi: 10.1093/plphys/kiac158
[61]

Groszmann M, Paicu T, Alvarez JP, Swain SM, Smyth DR. 2011. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. The Plant Journal 68:816−29

doi: 10.1111/j.1365-313X.2011.04732.x
[62]

Zhao J, Song W, Zhang X. 2024. Genetic and molecular regulation of fruit development in cucumber. New Phytologist 244:1742−49

doi: 10.1111/nph.20192
[63]

Liu L, Zhang K, Bai J, Lu J, Lu X, et al. 2022. All-flesh fruit in tomato is controlled by reduced expression dosage of AFF through a structural variant mutation in the promoter. Journal of Experimental Botany 73:123−38

doi: 10.1093/jxb/erab401
[64]

Li Y, Sun M, Xiang H, Liu Y, Li H, et al. 2019. Low overnight temperature-induced gibberellin accumulation increases locule number in tomato. International Journal of Molecular Sciences 20:3042

doi: 10.3390/ijms20123042
[65]

Nelson DC, Thoreson MC, Jones DA. 1979. The relationship between tuber size and hollow heart in Norgold Russet potatoes. American Potato Journal 56:329−37

doi: 10.1007/BF02853848
[66]

Elbatawi IE. 2008. An acoustic impact method to detect hollow heart of potato tubers. Biosystems Engineering 100:206−13

doi: 10.1016/j.biosystemseng.2008.02.009
[67]

Ding C, Wang D, Feng Z, Cui D. 2022. Extracting and modifying the vibration characteristic parameters of watermelon based on experimental modal measurement and finite element analysis for hollow heart defect detection. Journal of the ASABE 65:151−67

doi: 10.13031/ja.14871
[68]

Cheng Y, Haugh CG. 1994. Detecting hollow heart in potatoes using ultrasound. Transactions of the ASAE 37:217−22

doi: 10.13031/2013.28074
[69]

Watts KC, Russell LT. 1985. A review of techniques for detecting hollow heart in potatoes. Canadian Agricultural Engineering 27:85−90

[70]

Xu H, Chen H, Ying Y, Kondo N. 2014. Fruit density as an indicator for watermelon hollow detection using helmholtz resonance. Transactions of the ASABE 57:1163−72

doi: 10.13031/trans.57.10560
[71]

Finney EE, Norris KH. 1978. X-ray scans for detecting hollow heart in potatoes. American Potato Journal 55:95−105

doi: 10.1007/BF02852096
[72]

Birth GS. 1960. A nondestructive technique for detecting internal discolorations in potatoes. American Potato Journal 37:53−60

doi: 10.1007/BF02855060
[73]

Kang S, Lee KJ, Son JR. 2008. On-line internal quality evaluation system for the processing potatoes. Food Processing Automation Conference Proceedings, Providence, Rhode Island, 2008, Michigan: American Society of Agricultural and Biological Engineers. doi: 10.13031/2013.24545

[74]

Cen H, Lu R, Ariana DP, Mendoza F. 2014. Hyperspectral imaging-based classification and wavebands selection for internal defect detection of pickling cucumbers. Food and Bioprocess Technology 7:1689−700

doi: 10.1007/s11947-013-1177-6
[75]

Ariana DP, Lu R. 2008. Detection of internal defect in pickling cucumbers using hyperspectral transmittance imaging. Transactions of the ASABE 51:705−13

doi: 10.13031/2013.24367
[76]

Liu Z, He Y, Cen H, Lu R. 2018. Deep feature representation with stacked sparse auto-encoder and convolutional neural network for hyperspectral imaging-based detection of cucumber defects. Transactions of the Asabe 61:425−36

doi: 10.13031/trans.12214
[77]

Dacal-Nieto A, Formella A, Carrión P, Vazquez-Fernandez E, Fernández-Delgado M. 2011. Non–destructive detection of hollow heart in potatoes using hyperspectral imaging. In Proc. Computer Analysis of Images and Patterns: 14th International Conference, Proceedings Part II, Spain, 2011, eds Real P, Diaz-Pernil D, Molina-Abril H, Berciano A, Kropatsch W. Berlin Heidelberg: Springer. Vol 6855. pp. 180–87. doi: 10.1007/978-3-642-23678-5_20

[78]

Huang T, Li X, Xu M, Jin R, Ku J, et al. 2015. Non-destructive detection research for hollow heart of potato based on semi-transmission hyperspectral imaging and SVM. Spectroscopy and Spectral Analysis 35:198−202

doi: 10.3964/j.issn.1000-0593(2015)01-0198-05
[79]

Mallik I, Gudmestad NC. 2015. First report of potato mop top virus causing potato tuber necrosis in colorado and New Mexico. Plant Disease 99:164−64

doi: 10.1094/PDIS-08-14-0819-PDN