[1]

Dissanayaka DMNS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Effects of pyrolysis temperature on chemical composition of coconut-husk biochar for agricultural applications: a characterization study. Technology in Agronomy 3:13

doi: 10.48130/TIA-2023-0013
[2]

Ranasinghe CS, Wimalasekara R. 2006. Technical guidelines to enhance shelf life of tender king coconut for the export. Indian Coconut Journal 37(7):17−19

[3]

Jayasinghe MD, Gunasekara MMNP, Perera MGDS, Karunarathna KDSM, Chandrasiri GU, et al. 2023. Study on compositional changes of king coconut (Cocos Nucifera var. aurantiaca) water and kernel during maturation and evaluation of optimum quality characteristics targeting commercial applications. Journal of the National Science Foundation of Sri Lanka 51(2):273−85

doi: 10.4038/jnsfsr.v51i2.11127
[4]

CDA. 2023. Exports performance of coconut products - 2021/2022/2023. Sri Lanka Customs, Sri Lanka. Available at www.cda.gov.lk/web/images/pdf/export_perfo/2023/2023_Bulletin_-_SEP_T1.pdf. (Accessed on 09 07 2024)

[5]

Ekanayaka EMGN, Dissanayake DKRPL, Herath HMSK, Atapattu AJ. 2022. Effect of king coconut husk biochar on nitrogen retention in sandy and clay soils fertilized with urea and ammonium sulphate. Proc. Technological Transformation for Sustainable Development, 1 st Annual Research Session Faculty of Technology ARSFOT-2022, Sri Lanka, 2022. Eastern University, Sri Lanka. 36 pp

[6]

Dissanayake DKRPL, Dassanayake DMSD, Udumann SS, Keerthisinghe JP, Jayalath N, et al. 2023. Optimum cut size and dehydrated time for ash production using king coconut husk. Proc. International Symposium on Sustainable Plantation Management (ISSPM), Sri Lanka, 2023. Sri Lanka: National Institute of Plantation Management. pp. 143–56

[7]

Ekanayaka EMGN, Dissanayake DKRPL, Udumann SS, Dissanayaka DMNS, Nuwarapaksha TD, et al. 2023. Sustainable utilization of king coconut husk as a feedstock in biochar production with the highest conversion efficiency and desirable properties. IOP Conference Series: Earth and Environmental Science 1235(1):012009

doi: 10.1088/1755-1315/1235/1/012009
[8]

Dissanayake DKRPL, Dissanayaka DMNS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Is biochar a promising soil amendment to enhance perennial crop yield and soil quality in the tropics? Technology in Agronomy 3:4

doi: 10.48130/TIA-2023-0004
[9]

Dissanayake DKRPL, Udumann SS, Dissanayaka DMNS, Nuwarapaksha TD, Atapattu AJ. 2023. Effect of biochar application rate on macronutrient retention and leaching in two coconut growing soils. Technology in Agronomy 3:5

doi: 10.48130/TIA-2023-0005
[10]

Atapattu AJ, Ranasinghe CS, Nuwarapaksha TD, Udumann SS, Dissanayaka NS. 2024. Sustainable agriculture and Sustainable Development Goals (SDGs). In Emerging Technologies and Marketing Strategies for Sustainable Agriculture, eds Garwi J, Masengu R, Chiwaridzo O. US: IGI Global. pp. 1–27. doi: 10.4018/979-8-3693-4864-2.ch001

[11]

Dissanayaka NS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Agroforestry: an avenue for resilient and productive farming through integrated crops and livestock production. In Transitioning to Zero Hunger, ed. Kiba DI. Basel, Switzerland: MDPI Books, pp. 115–36. doi: 10.3390/books978-3-03897-863-3-5

[12]

Dissanayaka DMNS, Dissanayake DKRPL, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Agroforestry—a key tool in the climate-smart agriculture context: a review on coconut cultivation in Sri Lanka. Frontiers in Agronomy 5:1162750

doi: 10.3389/fagro.2023.1162750
[13]

Dissanayaka DMNS, Nuwarapaksha TD, Udumann SS, Dissanayake DKRPL, Atapattu AJ. 2022. A sustainable way of increasing productivity of coconut cultivation using cover crops: a review. Circular Agricultural Systems 2:7

doi: 10.48130/CAS-2022-0007
[14]

Nuwarapaksha TD, Udumann SS, Dissanayaka NS, Atapattu AJ. 2023. Coconut-based livestock farming: a sustainable approach to enhancing food security in Sri Lanka. In Transitioning to Zero Hunger, ed. Kiba DI. Basel, Switzerland: MDPI Books. pp. 197−213. doi: 10.3390/books978-3-03897-863-3-8

[15]

Nuwarapaksha TD, Udumann SS, Dissanayaka DMNS, Dissanayake DKRPL, Atapattu AJ. 2022. Coconut based multiple cropping systems: an analytical review in Sri Lankan coconut cultivations. Circular Agricultural Systems 2:8

doi: 10.48130/CAS-2022-0008
[16]

Udumann SS, Dissanayaka NS, Nuwarapaksha TD, Thelwadana EP, Atapattu AJ. 2023. Assessing the growth potential of Sunn hemp (Crotalaria juncea L. ) as a cover crop for major coconut-growing soils. Trends in Horticulture 6(2):3579

doi: 10.24294/th.v6i2.3579
[17]

Güereña DT, Lehmann J, Thies JE, Enders A, Karanja N, et al. 2015. Partitioning the contributions of biochar properties to enhanced biological nitrogen fixation in common bean (Phaseolus vulgaris). Biology and Fertility of Soils 51(4):479−91

doi: 10.1007/s00374-014-0990-z
[18]

Bremner JM, Mulvaney CS. 1982. Nitrogen—Total. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd edition, ed. Page AL. Madison: American Society of Agronomy, Soil Science Society of America, pp. 595–24. doi: 10.2134/agronmonogr9.2.2ed.c31

[19]

Enders A, Lehmann J. 2012. Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Communications in Soil Science and Plant Analysis 43(7):1042−52

doi: 10.1080/00103624.2012.656167
[20]

Cheng J, Hu SC, Sun GT, Geng ZC, Zhu MQ. 2021. The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process. Industrial Crops and Products 170:113690

doi: 10.1016/j.indcrop.2021.113690
[21]

Xu S, Chen J, Peng H, Leng S, Li H, et al. 2021. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel 291:120128

doi: 10.1016/j.fuel.2021.120128
[22]

Ippolito JA, Spokas KA, Novak JM, Lentz RD, Cantrell KB. 2015. Biochar elemental composition and factors influencing nutrient retention. In Biochar for Environmental Management: Science, Technology and Implementation, eds Lehmann J, Joseph S. London, UK: Taylor and Francis. pp. 139–63

[23]

Wang M, Wang JJ, Park JH, Wang J, Wang X, et al. 2022. Pyrolysis temperature affects dissolved phosphorus and carbon levels in alkali-enhanced biochar and its soil applications. Agronomy 12(8):1923

doi: 10.3390/agronomy12081923
[24]

Zhang S, Yang L, Huang S, Lou Y, Nie S, et al. 2014. Relationship between available K content and K input levels in fluvo-aquic soil under long term fertilization. Journal of Plant Nutrition and Fertilizers 20(3):773−77

doi: 10.11674/zwyf.2014.0332
[25]

Nuwarapaksha TD, Dissanayake WK, Gunathilaka WS, Udumann SS, Dissanayaka NS, et al. 2024. Assessing the optimum harvesting stage of Tithonia diversifolia as climate smart soil amendment for coconut plantations. Biology and Life Sciences Forum 30:1

doi: 10.3390/IOCAG2023-15967
[26]

Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology 19(1):191−15

doi: 10.1007/s11157-020-09523-3
[27]

Gunes A, Inal A, Sahin O, Taskin MB, Atakol O, et al. 2015. Variations in mineral element concentrations of poultry manure biochar obtained at different pyrolysis temperatures, and their effects on crop growth and mineral nutrition. Soil Use and Management 31(4):429−37

doi: 10.1111/sum.12205
[28]

Feola Conz R, Abbruzzini TF, de Andrade CA, Milori DMBP, Cerri CEP. 2017. Effect of pyrolysis temperature and feedstock type on agricultural properties and stability of biochars. Agricultural Sciences 8(9):914−33

doi: 10.4236/as.2017.89067
[29]

Tag AT, Duman G, Ucar S, Yanik J. 2016. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of Analytical and Applied Pyrolysis 120:200−06

doi: 10.1016/j.jaap.2016.05.006
[30]

Nuwarapaksha TD, Dissanayaka DMNS, Udumann SS, Vinujan S, Atapattu AJ. 2024. Exploring the impact of pyrolysis temperature on nutrient composition of Gliricidia sepium biochar: a comprehensive study. Technology in Agronomy 4:e016

doi: 10.48130/tia-0024-0014
[31]

Wang T, Camps-Arbestain M, Hedley M, Bishop P. 2012. Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil 357:173−87

doi: 10.1007/s11104-012-1131-9
[32]

de Figueiredo CC, de Souza Prado Junqueira Reis A, Silva de Araujo A, Blum LEB, Shah K, et al. 2021. Assessing the potential of sewage sludge-derived biochar as a novel phosphorus fertilizer: influence of extractant solutions and pyrolysis temperatures. Waste Management 124:144−53

doi: 10.1016/j.wasman.2021.01.044
[33]

Anwar AR, Ala A, Kuswinanti T, Syam'un E. 2021. Effect of ashing temperature on potassium nutrient content of various organic matter. IOP Conference Series: Earth and Environmental Science 807:042044

doi: 10.1088/1755-1315/807/4/042044
[34]

Eames IW, Marr NJ, Sabir H. 1992. The evaporation coefficient of water: a review. International Journal of Heat and Mass Transfer 40(12):2963−73

doi: 10.1016/S0017-9310(96)00339-0
[35]

Wijitkosum S, Jiwnok P. 2019. Elemental composition of biochar obtained from agricultural waste for soil amendment and carbon sequestration. Applied Sciences 9(19):3980

doi: 10.3390/app9193980
[36]

Sun J, He F, Pan Y, Zhang Z. 2017. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 67(1):12−22

doi: 10.1080/09064710.2016.1214745
[37]

Harris GK, Marshall MR. 2017. Ash analysis. In Food Analysis, ed Nielsen SS. Cham: Springer. pp. 287–97. doi: 10.1007/978-3-319-45776-5_16

[38]

Ismail BP. 2024. Ash content determination. In Nielsen's Food Analysis Laboratory Manual, eds Ismail BP, Nielsen SS. Cham: Springer. pp. 129–31. doi: 10.1007/978-3-031-44970-3_14