[1] |
Food and Agriculture Organization of the United Nations. 2020. FAOSTAT statistical database. Rome: FAO |
[2] |
Vavilov NI. 1951. The origin, variation, immunity and breeding of cultivated plants. New York : Ronald Press. xiii, 364 pp |
[3] |
Faust M, Surányi D, Nyujtó F. 1998. Origin and dissemination of apricot. In Horticultural Reviews, ed. Janick J. New York: John Wiley & Sons, Inc. Volume 22. pp. 225−60. doi: 10.1002/9780470650738.ch6 |
[4] |
Bassi D, Negri P. 1991. Ripening date and fruit traits in apricot progenies. Acta Horticulturae 293:133−40 doi: 10.17660/ActaHortic.1991.293.12 |
[5] |
Bassi D, Bellini E, Guerriero R, Monastra F, Pennone F. 1995. Apricot breeding in Italy. Acta Horticulturae 384:47−54 doi: 10.17660/ActaHortic.1995.384.3 |
[6] |
Bassi D, Audergon JM. 2006. Apricot breeding: update and perspectives. Acta Horticulturae 701:279−94 doi: 10.17660/ActaHortic.2006.701.43 |
[7] |
Ledbetter C, Peterson S, Jenner J. 2006. Modification of sugar profiles in California adapted apricots (Prunus armeniaca L.) through breeding with Central Asian germplasm. Euphytica 148:251−59 doi: 10.1007/s10681-005-9016-0 |
[8] |
Martínez-Calvo J, Font A, Llácer G, Badenes ML. 2009. Apricot and peach breeding programs from the IVIA. Acta Horticulturae 814:185−88 doi: 10.17660/ActaHortic.2009.814.23 |
[9] |
Bassi D, Rizzo M, Foschi S. 2010. Breeding apricot in northern Italy. Acta Horticulturae 862:151−58 doi: 10.17660/ActaHortic.2010.862.23 |
[10] |
Bassi D, Foschi S. 2020. Raising the standards in breeding apricots at MAS.PES, Italy. Acta Horticulturae 1290:27−30 doi: 10.17660/ActaHortic.2020.1290.5 |
[11] |
Giovannini D, Bassi D, Cutuli M, Drogoudi P, Foschi S, et al. 2021. Evaluation of novel peach cultivars in the European Union: the EUFRIN Peach and Apricot Working Group initiative. Acta Horticulturae 1304:13−20 doi: 10.17660/ActaHortic.2021.1304.2 |
[12] |
Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, et al. 2007. Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genetics & Genomes 3:287 doi: 10.1007/s11295-006-0079-4 |
[13] |
Jung S, Jiwan D, Cho I, Lee T, Abbott A, et al. 2009. Synteny of Prunus and other model plant species. BMC Genomics 10:76 doi: 10.1186/1471-2164-10-76 |
[14] |
García-Gómez BE, Salazar JA, Dondini L, Martínez-Gómez P, Ruiz D. 2019. Identification of QTLs linked to fruit quality traits in apricot (Prunus armeniaca L.) and biological validation through gene expression analysis using qPCR. Molecular Breeding 39:28 doi: 10.1007/s11032-018-0926-7 |
[15] |
Audergon JM, Reich M, Souty M. 1991. Abricot. Les variations des criteres de qualite. Arboriculture Fruitière 436:35−46 |
[16] |
Ruiz D, Egea J, Tomás-Barberán FA, Gil MI. 2005. Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. Journal of Agricultural and Food Chemistry 53:6368−74 doi: 10.1021/jf0480703 |
[17] |
Ruiz D, Egea J. 2008. Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 163:143−58 doi: 10.1007/s10681-007-9640-y |
[18] |
Drogoudi PD, Vemmos S, Pantelidis G, Petri E, Tzoutzoukou C, et al. 2008. Physical characters and antioxidant, sugar, and mineral nutrient contents in fruit from 29 apricot (Prunus armeniaca L.) cultivars and hybrids. Journal of Agricultural and Food Chemistry 56:10754−60 doi: 10.1021/jf801995x |
[19] |
Groppi A, Liu S, Cornille A, Decroocq S, Bui QT, et al. 2021. Population genomics of apricots unravels domestication history and adaptive events. Nature Communications 12:3956 doi: 10.1038/s41467-021-24283-6 |
[20] |
Karataş N, Şengül M. 2020. Some important physicochemical and bioactive characteristics of the main apricot cultivars from Turkey. Turkish Journal of Agriculture and Forestry 44:651−61 doi: 10.3906/tar-2002-95 |
[21] |
Harker FR, Maindonald J, Murray SH, Gunson FA, Hallett IC, et al. 2002. Sensory interpretation of instrumental measurements 1: texture of apple fruit. Postharvest Biology and Technology 24:225−39 doi: 10.1016/S0925-5214(01)00158-2 |
[22] |
Campbell OE, Merwin IA, Padilla-Zakour OI. 2013. Characterization and the effect of maturity at harvest on the phenolic and carotenoid content of Northeast USA Apricot (Prunus armeniaca) varieties. Journal of Agricultural and Food Chemistry 61:12700−10 doi: 10.1021/jf403644r |
[23] |
Stanley J, Prakash R, Marshall R, Schröder R. 2013. Effect of harvest maturity and cold storage on correlations between fruit properties during ripening of apricot (Prunus armeniaca). Postharvest Biology and Technology 82:39−50 doi: 10.1016/j.postharvbio.2013.02.020 |
[24] |
Stanley J, Marshall R, Tustin S, Woolf A. 2014. Preharvest factors affect apricot fruit quality. Acta Horticulturae 1058:269−76 doi: 10.17660/ActaHortic.2014.1058.31 |
[25] |
Stanley J, Feng J, Olsson S. 2015. Crop load and harvest maturity effects on consumer preferences for apricots. Journal of the Science of Food and Agriculture 95:752−63 doi: 10.1002/jsfa.6850 |
[26] |
Fan X, Zhao H, Wang X, Cao J, Jiang W. 2017. Sugar and organic acid composition of apricot and their contribution to sensory quality and consumer satisfaction. Scientia Horticulturae 225:553−60 doi: 10.1016/j.scienta.2017.07.016 |
[27] |
Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, et al. 2002. Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theoretical and Applied Genetics 105:145−59 doi: 10.1007/s00122-001-0841-9 |
[28] |
Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany 64:1451−69 doi: 10.1093/jxb/ert035 |
[29] |
Xi W, Zheng H, Zhang Q, Li W. 2016. Profiling taste and aroma compound metabolism during apricot fruit development and ripening. International Journal of Molecular Sciences 17:998 doi: 10.3390/ijms17070998 |
[30] |
García-Gómez BE, Ruiz D, Salazar JA, Rubio M, Martínez-García PJ, et al. 2020. Analysis of metabolites and gene expression changes relative to apricot (Prunus armeniaca L.) fruit quality during development and ripening. Frontiers in Plant Science 11:1269 doi: 10.3389/fpls.2020.01269 |
[31] |
Bartolozzi F, Bertazza G, Bassi D, Cristoferi G. 1997. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. Journal of Chromatography A 758:99−107 doi: 10.1016/S0021-9673(96)00709-1 |
[32] |
Colaric M, Veberic R, Stampar F, Hudina M. 2005. Evaluation of peach and nectarine fruit quality and correlations between sensory and chemical attributes. Journal of the Science of Food and Agriculture 85:2611−16 doi: 10.1002/jsfa.2316 |
[33] |
Crisosto CH, Crisosto GM. 2005. Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid melting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biology and Technology 38:239−46 doi: 10.1016/j.postharvbio.2005.07.007 |
[34] |
Carbone K, Ciccoritti R, Paliotta M, Rosato T, Terlizzi M, et al. 2018. Chemometric classification of early-ripening apricot (Prunus armeniaca, L.) germplasm based on quality traits, biochemical profiling and in vitro biological activity. Scientia Horticulturae 227:187−95 doi: 10.1016/j.scienta.2017.09.020 |
[35] |
Baccichet I, Tagliabue GA, da Silva Linge C, Tura D, Chiozzotto R, et al. 2023. Sensory perception of citrate and malate and their impact on the overall taste in apricot (Prunus armeniaca L.) fruits. Scientia Horticulturae 321:112266 doi: 10.1016/j.scienta.2023.112266 |
[36] |
Bassi D, Selli RK. 1990. Evaluation of fruit quality in peach and apricot. Advances in Horticultural Science 4:107−12 |
[37] |
Bassi D, Bartolozzi F, Muzzi E. 1996. Patterns and heritability of carboxylic acids and soluble sugars in fruits of apricot (Prunus armeniaca L.). Plant Breeding 115:67−70 doi: 10.1111/j.1439-0523.1996.tb00873.x |
[38] |
Gurrieri F, Audergon JM, Albagnac G, Reich M. 2001. Soluble sugars and carboxylic acids in ripe apricot fruit as parameters for distinguishing different cultivars. Euphytica 117:183−89 doi: 10.1023/A:1026595528044 |
[39] |
Chen JY, Zhang H, Matsunaga R. 2006. Rapid determination of the main organic acid composition of raw Japanese apricot fruit juices using near-infrared spectroscopy. Journal of Agricultural and Food Chemistry 54:9652−57 doi: 10.1021/jf061461s |
[40] |
Akin EB, Karabulut I, Topcu A. 2008. Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chemistry 107:939−48 doi: 10.1016/j.foodchem.2007.08.052 |
[41] |
Bureau S, Renard CMGC, Reich M, Ginies C, Audergon JM. 2009. Change in anthocyanin concentrations in red apricot fruits during ripening. LWT - Food Science and Technology 42:372−77 doi: 10.1016/j.lwt.2008.03.010 |
[42] |
Baccichet I, Chiozzotto R, Scaglione D, Bassi D, Rossini L, et al. 2022. Genetic dissection of fruit maturity date in apricot (P. armeniaca L.) through a Single Primer Enrichment Technology (SPET) approach. BMC Genomics 23:712 doi: 10.1186/s12864-022-08901-1 |
[43] |
Guichard E, Souty M. 1988. Comparison of the relative quantities of aroma compounds found in fresh apricot (Prunus armeniaca) from six different varieties. Zeitschrift für Lebensmittel-Untersuchung und Forschung 186:301−07 doi: 10.1007/BF01027031 |
[44] |
Bureau S, Chahine H, Gouble B, Reich M, Albagnac G, et al. 2006. Fruit ripening of contrasted apricot varieties: physical, physiological and biochemical changes. Acta Horticulturae 701:511−16 doi: 10.17660/ActaHortic.2006.701.88 |
[45] |
Ruiz D, Lambert P, Audergon JM, Dondini L, Tartarini S, et al. 2010. Identification of QTLs for fruit quality traits in apricot. Acta Horticulturae 862:587−92 doi: 10.17660/ActaHortic.2010.862.93 |
[46] |
Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, et al. 1998. Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theoretical and Applied Genetics 97:888−95 doi: 10.1007/s001220050969 |
[47] |
Boudehri K, Belka MA, Cardinet G, Capdeville G, Renaud C, et al. 2009. Toward the isolation of the d gene controlling the acidity of peach fruit by positional cloning. Acta Horticulturae 814:507−10 doi: 10.17660/ActaHortic.2009.814.85 |
[48] |
Micheletti D, Dettori MT, Micali S, Aramini V, Pacheco I, et al. 2015. Whole-genome analysis of diversity and SNP-major gene association in peach germplasm. PLoS One 10:e0136803 doi: 10.1371/journal.pone.0136803 |
[49] |
Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, et al. 1998. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theoretical and Applied Genetics 97:60−73 doi: 10.1007/s001220050867 |
[50] |
Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C. 2003. Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Molecular Biology 52:511−26 doi: 10.1023/A:1024886500979 |
[51] |
Xu K, Wang A, Brown S. 2012. Genetic characterization of the Ma locus with pH and titratable acidity in apple. Molecular Breeding 30:899−912 doi: 10.1007/s11032-011-9674-7 |
[52] |
Khan SA, Beekwilder J, Schaart JG, Mumm R, Soriano JM, et al. 2013. Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16. Tree Genetics & Genomes 9:475−87 doi: 10.1007/s11295-012-0571-y |
[53] |
Verma S, Evans K, Guan Y, Luby JJ, Rosyara UR, et al. 2019. Two large-effect QTLs, Ma and Ma3, determine genetic potential for acidity in apple fruit: breeding insights from a multi-family study. Tree Genetics & Genomes 15:18 doi: 10.1007/s11295-019-1324-y |
[54] |
Martinoia E, Maeshima M, Neuhaus HE. 2007. Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany 58:83−102 doi: 10.1093/jxb/erl183 |
[55] |
Bai Y, Dougherty L, Li M, Fazio G, Cheng L, et al. 2012. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Molecular Genetics and Genomics 287:663−78 doi: 10.1007/s00438-012-0707-7 |
[56] |
Ma B, Zhao S, Wu B, Wang D, Peng Q, et al. 2016. Construction of a high density linkage map and its application in the identification of QTLs for soluble sugar and organic acid components in apple. Tree Genetics & Genomes 12:1 doi: 10.1007/s11295-015-0959-6 |
[57] |
Butelli E, Licciardello C, Ramadugu C, Durand-Hulak M, Celant A, et al. 2019. Noemi controls production of flavonoid pigments and fruit acidity and illustrates the domestication routes of modern citrus varieties. Current Biology 29:158−164.e2 doi: 10.1016/j.cub.2018.11.040 |
[58] |
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, et al. 2014. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Reports 6:32−43 doi: 10.1016/j.celrep.2013.12.009 |
[59] |
Fang DQ, Federici CT, Roose ML. 1997. Development of molecular markers linked to a gene controlling fruit acidity in citrus. Genome 40:841−49 doi: 10.1139/g97-809 |
[60] |
Vallarino JG, Pott DM, Cruz-Rus E, Miranda L, Medina-Minguez JJ, et al. 2019. Identification of quantitative trait loci and candidate genes for primary metabolite content in strawberry fruit. Horticulture Research 6:4 doi: 10.1038/s41438-018-0077-3 |
[61] |
Jiang F, Zhang J, Wang S, Yang L, Luo Y, et al. 2019. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Horticulture Research 6:128 doi: 10.1038/s41438-019-0215-6 |
[62] |
Salazar JA, Ruiz D, Egea J, Martínez-Gómez P. 2013. Transmission of fruit quality traits in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using Simple Sequence Repeat (SSR) markers. Plant Molecular Biology Reporter 31:1506−17 doi: 10.1007/s11105-013-0625-9 |
[63] |
Barchi L, Acquadro A, Alonso D, Aprea G, Bassolino L, et al. 2019. Single primer enrichment technology (SPET) for high-throughput genotyping in tomato and eggplant germplasm. Frontiers in Plant Science 10:1005 doi: 10.3389/fpls.2019.01005 |
[64] |
Scaglione D, Pinosio S, Marroni F, Di Centa E, Fornasiero A, et al. 2019. Single primer enrichment technology as a tool for massive genotyping: a benchmark on black poplar and maize. Annals of Botany 124:543−52 doi: 10.1093/aob/mcz054 |
[65] |
Baccichet I, Chiozzotto R, Spinardi A, Gardana C, Bassi D, et al. 2022. Evaluation of a large apricot germplasm collection for fruit skin and flesh acidity and organic acids composition. Scientia Horticulturae 294:110780 doi: 10.1016/j.scienta.2021.110780 |
[66] |
Gilmour AR, Gogel BJ, Cullis BR, Thompson R. 2009. ASReml user guide release 3.0. Hemel Hempstead: VSN International |
[67] |
Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19:1655−64 doi: 10.1101/gr.094052.109 |
[68] |
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611−20 doi: 10.1111/j.1365-294X.2005.02553.x |
[69] |
Wang J, Zhang Z. 2021. GAPIT Version 3: boosting power and accuracy for genomic association and prediction. Genomics, Proteomics & Bioinformatics 19:629−40 doi: 10.1016/j.gpb.2021.08.005 |
[70] |
Nsibi M, Gouble B, Bureau S, Flutre T, Sauvage C, et al. 2020. Adoption and optimization of genomic selection to sustain breeding for apricot fruit quality. G3 Genes|Genomes|Genetics 10:4513−29 doi: 10.1534/g3.120.401452 |
[71] |
Albertini MV, Carcouet E, Pailly O, Gambotti C, Luro F, et al. 2006. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. Journal of Agricultural and Food Chemistry 54:8335−39 doi: 10.1021/jf061648j |
[72] |
Voorrips RE. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93:77−78 doi: 10.1093/jhered/93.1.77 |
[73] |
Danner MA, Citadin I, Sasso SAZ, Sachet MR, Mazaro SM. 2011. Germplasm characterization of three jabuticaba tree species. Revista Brasileira de Fruticultura 33:839−47 doi: 10.1590/S0100-29452011005000095 |
[74] |
Shikari AB, Najeeb S, Khan GH, Mohidin FA, Shah AH, et al. 2021. KASP™ based markers reveal a population sub-structure in temperate rice (Oryza sativa L.) germplasm and local landraces grown in the Kashmir valley, north-western Himalayas. Genetic Resources and Crop Evolution 68:821−34 doi: 10.1007/s10722-020-01025-z |
[75] |
Dondini L, Domenichini C, Dong Y, Gennari F, Bassi D, et al. 2022. Quantitative trait loci mapping and identification of candidate genes linked to fruit acidity in apricot (Prunus armeniaca L.). Frontiers in Plant Science 13:838370 doi: 10.3389/fpls.2022.838370 |
[76] |
Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, et al. 2013. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics 45:487−94 doi: 10.1038/ng.2586 |
[77] |
Audergon JM, Dosba F, Karayiannis I, Dicenta F. 1994. Amélioration de l'abricotier pour la résistance à la sharka. EPPO Bulletin 24:741−48 doi: 10.1111/j.1365-2338.1994.tb01090.x |
[78] |
Badenes ML, Martínez-Calvo J, Llácer G. 1998. Analysis of apricot germplasm from the European ecogeographical group. Euphytica 102:93−99 doi: 10.1023/A:1018332312570 |
[79] |
Karayiannis I, Thomidis T, Tsaftaris A. 2008. Inheritance of resistance to Plum pox virus in apricot (Prunus armeniaca L.). Tree Genetics & Genomes 4:143−48 doi: 10.1007/s11295-007-0095-z |
[80] |
Decroocq S, Cornille A, Tricon D, Babayeva S, Chague A, et al. 2016. New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Molecular Ecology 25:4712−29 doi: 10.1111/mec.13772 |
[81] |
Lo Bianco R, Farina V, Indelicato SG, Filizzola F, Agozzino P. 2010. Fruit physical, chemical and aromatic attributes of early, intermediate and late apricot cultivars. Journal of the Science of Food and Agriculture 90:1008−19 doi: 10.1002/jsfa.3910 |
[82] |
Audergon JM, Souty M, Breuils L. 1990. Amélioration génétique pour l'obtention d'abricots de qualité. In IX Colloque sur les researches fruitiéres. France: Avignon. pp. 217−28 |
[83] |
Baccichet I, Chiozzotto R, Bassi D, Gardana C, Cirilli M, et al. 2021. Characterization of fruit quality traits for organic acids content and profile in a large peach germplasm collection. Scientia Horticulturae 278:109865 doi: 10.1016/j.scienta.2020.109865 |
[84] |
Marsh KB, Boldingh HL, Shilton RS, Laing WA. 2009. Changes in quinic acid metabolism during fruit development in three kiwifruit species. Functional Plant Biology 36:463−70 doi: 10.1071/FP08240 |
[85] |
Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, et al. 2004. QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theoretical and Applied Genetics 109:884−97 doi: 10.1007/s00122-004-1703-z |
[86] |
Zeballos JL, Abidi W, Giménez R, Monforte AJ, Moreno MÁ, et al. 2016. Mapping QTLs associated with fruit quality traits in peach [Prunus persica (L.) Batsch] using SNP maps. Tree Genetics & Genomes 12:37 doi: 10.1007/s11295-016-0996-9 |
[87] |
Hernández Mora JR, Micheletti D, Bink M, Van de Weg E, Cantín C, et al. 2017. Integrated QTL detection for key breeding traits in multiple peach progenies. BMC Genomics 18:404 doi: 10.1186/s12864-017-3783-6 |
[88] |
Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, et al. 2009. Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biology 9:59 doi: 10.1186/1471-2229-9-59 |
[89] |
Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, et al. 2011. QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genetics & Genomes 7:323−35 doi: 10.1007/s11295-010-0334-6 |
[90] |
Calle A, Wünsch A. 2020. Multiple-population QTL mapping of maturity and fruit-quality traits reveals LG4 region as a breeding target in sweet cherry (Prunus avium L.). Horticulture Research 7:127 doi: 10.1038/s41438-020-00349-2 |
[91] |
Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, et al. 2004. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences of the United States of America 101:9891−96 doi: 10.1073/pnas.0307937101 |