[1] |
Liu H, Wisler GC, Duffus JE. 2000. Particle lengths of whitefly-transmitted Criniviruses. Plant Disease 84:803−05 doi: 10.1094/PDIS.2000.84.7.803 |
[2] |
Wintermantel WM, Wisler GC, Anchieta AG, Liu HY, Karasev AV, et al. 2005. The complete nucleotide sequence and genome organization of tomato chlorosis virus. Archives of Virology 150:2287−98 doi: 10.1007/s00705-005-0571-4 |
[3] |
Fiallo-Olivé E, Navas-Castillo J. 2019. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Molecular Plant Pathology 20:1307−20 doi: 10.1111/mpp.12847 |
[4] |
García-Cano E, Resende RO, Fernández-Muñoz R, Moriones E. 2006. Synergistic interaction between Tomato chlorosis virus and Tomato spotted wilt virus results in breakdown of resistance in tomato. Phytopathology 96:1263−69 doi: 10.1094/PHYTO-96-1263 |
[5] |
Ng JCK, Falk BW. 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annual Review of Phytopathology 44:183−212 doi: 10.1146/annurev.phyto.44.070505.143325 |
[6] |
Samuel G. 1931. Some experiments on inoculating methods with plant viruses, and on local lesions. Annals of Applied Biology 18:494−507 doi: 10.1111/j.1744-7348.1931.tb02320.x |
[7] |
Zhou T, Wu L, Wang Y, Cheng Z, Ji Y, et al. 2011. Transmission of rice black-streaked dwarf virus from frozen infected leaves to healthy rice plants by small brown planthopper (Laodelphax striatellus). Rice Science 18:152−56 doi: 10.1016/S1672-6308(11)60022-X |
[8] |
Lee H, Kim MK, Choi HS, Kang JH, Ju HJ, et al. 2017. Efficient transmission and propagation of tomato chlorosis virus by simple single-leaflet grafting. The Plant Pathology Journal 33:345−49 doi: 10.5423/PPJ.NT.02.2017.0039 |
[9] |
Zhao R, Wang N, Wang R, Chen H, Shi Y, et al. 2014. Characterization and full genome sequence analysis of a Chinese isolate of tomato chlorosis virus. Acta Virologica 58:92−94 doi: 10.4149/av_2014_01_92 |
[10] |
Navas-Hermosilla E, Fiallo-Olivé E, Navas-Castillo J. 2021. Infectious clones of tomato chlorosis virus: toward increasing efficiency by introducing the hepatitis delta virus ribozyme. Frontiers in Microbiology 12:693457 doi: 10.3389/fmicb.2021.693457 |
[11] |
Choi B, Kwon SJ, Kim MH, Choe S, Kwak HR, et al. 2019. A plant virus-based vector system for gene function studies in pepper. Plant Physiology 181:867−80 doi: 10.1104/pp.19.00836 |
[12] |
Heo KJ, Kwon SJ, Kim MK, Kwak HR, Han SJ, et al. 2020. Newly emerged resistance-breaking variants of cucumber mosaic virus represent ongoing host-interactive evolution of an RNA virus. Virus Evolution 6:veaa070 doi: 10.1093/ve/veaa070 |
[13] |
Ryu CM, Anand A, Kang L, Mysore KS. 2004. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. The Plant Journal 40:322−31 doi: 10.1111/j.1365-313X.2004.02211.x |
[14] |
Orílio AF, Fortes IM, Navas-Castillo J. 2014. Infectious cDNA clones of the crinivirus Tomato chlorosis virus are competent for systemic plant infection and whitefly-transmission. Virology 464−465:365−74 doi: 10.1016/j.virol.2014.07.032 |