[1]

Gu Z, Hu C, Gan Y, Zhou J, Tian G, et al. 2024. Role of microbes in alleviating crop drought stress: A review. Plants 13(3):384

doi: 10.3390/plants13030384
[2]

Gu Q, Xiao Q, Chen Z, Han Y. 2022. Crosstalk between melatonin and reactive oxygen species in plant abiotic stress responses: An update. International Journal of Molecular Sciences 23(10):5666

doi: 10.3390/ijms23105666
[3]

He Z, Zhang P, Jia H, Zhang S, Nishawy E, et al. 2024. Regulatory mechanisms and breeding strategies for crop drought resistance. New Crops 1:100029

doi: 10.1016/j.ncrops.2024.100029
[4]

Yang K, Sun H, Liu M, Zhu L, Zhang K, et al. 2023. Morphological and physiological mechanisms of melatonin on delaying drought-induced leaf senescence in cotton. International Journal of Molecular Sciences 24(8):7269

doi: 10.3390/ijms24087269
[5]

Salvi P, Mahawar H, Agarrwal R, Kajal, Gautam V, et al. 2022. Advancement in the molecular perspective of plant-endophytic interaction to mitigate drought stress in plants. Frontiers in Microbiology 13:981355

doi: 10.3389/fmicb.2022.981355
[6]

Huang X, Hou L, Meng J, You H, Li Z, et al. 2018. The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Molecular Plant 11(7):970−82

doi: 10.1016/j.molp.2018.05.001
[7]

Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. 1958. Isolation of melatonin, the pineal gland factor that lightens melanocytes. Journal of the American Chemical Society 80(10):2587

doi: 10.1021/ja01543a060
[8]

Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, et al. 1995. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International 35(3):627−34

[9]

Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, et al. 1995. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research 18(1):28−31

doi: 10.1111/j.1600-079X.1995.tb00136.x
[10]

Pan Y, Xu X, Li L, Sun Q, Wang Q, et al. 2023. Melatonin-mediated development and abiotic stress tolerance in plants. Frontiers in Plant Science 14:1100827

doi: 10.3389/fpls.2023.1100827
[11]

Ahmad I, Zhu G, Zhou G, Liu J, Younas MU, et al. 2023. Melatonin role in plant growth and physiology under abiotic stress. International Journal of Molecular Sciences 24(10):8759

doi: 10.3390/ijms24108759
[12]

Supriya L, Dake D, Muthamilarasan M, Padmaja G. 2024. Melatonin-mediated regulation of autophagy is independent of ABA under drought stress in sensitive variety of Gossypium hirsutum L. Plant Physiology and Biochemistry 207:108409

doi: 10.1016/j.plaphy.2024.108409
[13]

Luo M, Wang D, Delaplace P, Pan Y, Zhou Y, et al. 2023. Melatonin enhances drought tolerance by affecting jasmonic acid and lignin biosynthesis in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry 202:107974

doi: 10.1016/j.plaphy.2023.107974
[14]

Hu W, Zhang J, Yan K, Zhou Z, Zhao W, et al. 2021. Beneficial effects of abscisic acid and melatonin in overcoming drought stress in cotton (Gossypium hirsutum L.). Physiologia Plantarum 173(4):2041−54

doi: 10.1111/ppl.13550
[15]

Yuan S, Guan C, Liu S, Huang Y, Tian D, et al. 2016. Comparative transcriptomic analyses of differentially expressed genes in transgenic melatonin biosynthesis ovine HIOMT gene in switchgrass. Frontiers in Plant Science 7:1613

doi: 10.3389/fpls.2016.01613
[16]

Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, et al. 2013. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. Journal of Pineal Research 54(2):127−38

doi: 10.1111/jpi.12026
[17]

Back K, Tan DX, Reiter RJ. 2016. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research 61(4):426−37

doi: 10.1111/jpi.12364
[18]

Gao T, Zhang D, Shen W, Xu S, Jia X, et al. 2024. MdASMT9-mediated melatonin biosynthesis enhances basal thermotolerance in apple plants. Plant, Cell & Environment 47(3):751−64

doi: 10.1111/pce.14791
[19]

Lee HY, Lee K, Back K. 2019. Knockout of Arabidopsis serotonin N-acetyltransferase-2 reduces melatonin levels and delays flowering. Biomolecules 9(11):712

doi: 10.3390/BIOM9110712
[20]

Daly P, McClellan C, Maluk M, Oakey H, Lapierre C, et al. 2019. RNAi-suppression of barley caffeic acid O-methyltransferase modifies lignin despite redundancy in the gene family. Plant Biotechnology Journal 17(3):594−7

doi: 10.1111/pbi.13001
[21]

Yu Y, Ni Y, Qiao T, Ji X, Xu J, et al. 2022. Overexpression of VvASMT1 from grapevine enhanced salt and osmotic stress tolerance in Nicotiana benthamiana. PLoS One 17(6):e0269028

doi: 10.1371/journal.pone.0269028
[22]

Zuo B, Zheng X, He P, Wang L, Lei Q, et al. 2014. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. Journal of Pineal Research 57(4):408−17

doi: 10.1111/jpi.12180
[23]

Park S, Byeon Y, Back K. 2013. Functional analyses of three ASMT gene family members in rice plants. Journal of Pineal Research 55(4):409−15

doi: 10.1111/jpi.12088
[24]

Huangfu L, Chen R, Lu Y, Zhang E, Miao J, et al. 2022. OsCOMT, encoding a caffeic acid O-methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development. Plant Biotechnology Journal 20(6):1122−39

doi: 10.1111/pbi.13794
[25]

Lee K, Back K. 2017. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. Journal of Pineal Research 62(3):e12392

doi: 10.1111/jpi.12392
[26]

Hwang OJ, Back K. 2018. Melatonin is involved in skotomorphogenesis by regulating brassinosteroid biosynthesis in rice plants. Journal of Pineal Research 65(2):e12495

doi: 10.1111/jpi.12495
[27]

Yao Z, Zhang X, Liang Y, Zhang J, Xu Y, et al. 2022. NtCOMT1 responsible for phytomelatonin biosynthesis confers drought tolerance in Nicotiana tabacum. Phytochemistry 202:113306

doi: 10.1016/j.phytochem.2022.113306
[28]

Chang J, Guo Y, Yan J, Zhang Z, Yuan L, et al. 2021. The role of watermelon caffeic acid O-methyltransferase (ClCOMT1) in melatonin biosynthesis and abiotic stress tolerance. Horticulture Research 8(1):210

doi: 10.1038/s41438-021-00645-5
[29]

Choi GH, Lee HY, Back K. 2017. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants. Journal of Pineal Research 63(1):e12412

doi: 10.1111/jpi.12412
[30]

Yang WJ, Du YT, Zhou YB, Chen J, Xu ZS, et al. 2019. Overexpression of TaCOMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences 20(3):652

doi: 10.3390/ijms20030652
[31]

Yue L, Kang Y, Zhong M, Kang D, Zhao P, et al. 2023. Melatonin delays postharvest senescence through suppressing the inhibition of BrERF2/BrERF109 on flavonoid biosynthesis in flowering chinese cabbage. International Journal of Molecular Sciences 24(3):2933

doi: 10.3390/ijms24032933
[32]

Bai Y, Wei Y, Yin H, Hu W, Cheng X, et al. 2022. PP2C1 fine-tunes melatonin biosynthesis and phytomelatonin receptor PMTR1 binding to melatonin in cassava. Journal of Pineal Research 73(1):e12804

doi: 10.1111/jpi.12804
[33]

Li Y, Sun Y, Cui H, Li M, Yang G, et al. 2022. Carex rigescens caffeic acid O-methyltransferase gene CrCOMT confer melatonin-mediated drought tolerance in transgenic tobacco. Frontiers in Plant Science 13:971431

doi: 10.3389/fpls.2022.971431
[34]

Wang P, Sun X, Li C, Wei Z, Liang D, et al. 2013. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. Journal of pineal research 54(3):292−302

doi: 10.1111/jpi.12017
[35]

Liang B, Ma C, Zhang Z, Wei, Z., Gao, T et al. 2018. Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environmental and experimental botany 155:650−661

doi: 10.1016/j.envexpbot.2018.08.016
[36]

Roy M, Niu J, Irshad A, Kareem HA, Hassan MU, et al. 2021. Exogenous melatonin protects alfalfa (Medicago sativa L.) seedlings from drought-induced damage by modulating reactive oxygen species metabolism, mineral balance and photosynthetic efficiency. Plant Stress 2:100044

doi: 10.1016/j.stress.2021.100044
[37]

Ahmad S, Kamran M, Ding R, Meng X, Wang H, et al. 2019. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ 2019(10):e7793

doi: 10.7717/peerj.7793
[38]

Kaya C, Shabala S. 2023. Melatonin improves drought stress tolerance of pepper (Capsicum annuum) plants via upregulating nitrogen metabolism. Functional Plant Biology 51(1):FP23060

doi: 10.1071/FP23060
[39]

Liu J, Wang W, Wang L, Sun Y. 2015. Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regulation 77(3):317−26

doi: 10.1007/s10725-015-0066-6
[40]

Yang X, Xu H, Li T, Wang R. 2017. Effects of exogenous melatonin on photosynthesis of tomato leaves under drought stress. Scientia Agricultura Sinica 50(16):3186−95

doi: 10.3864/j.issn.0578-1752.2017.16.013
[41]

Jafari M, Shahsavar A. 2021. The effect of foliar application of melatonin on changes in secondary metabolite contents in two Citrus species under drought stress conditions. Frontiers in Plant Science 12:692735

doi: 10.3389/fpls.2021.692735
[42]

Cui G, Zhao X, Liu S, Sun F, Zhang C, et al. 2017. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiology and Biochemistry 118:138−49

doi: 10.1016/j.plaphy.2017.06.014
[43]

Zhang Z, Guo L, Sun H, Wu J, Liu L, et al. 2023. Melatonin increases drought resistance through regulating the fine root and root hair morphology of wheat revealed with RhizoPot. Agronomy 13(7):1881

doi: 10.3390/agronomy13071881
[44]

Hu W, Cao Y, Loka DA, Harris-Shultz KR, Reiter RJ, et al. 2020. Exogenous melatonin improves cotton (Gossypium hirsutum L.) pollen fertility under drought by regulating carbohydrate metabolism in male tissues. Plant Physiology and Biochemistry 151:579−88

doi: 10.1016/j.plaphy.2020.04.001
[45]

Liang D, Ni Z, Xia H, Xie Y, Lv X, et al. 2019. Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Scientia Horticulturae 246:34−43

doi: 10.1016/j.scienta.2018.10.058
[46]

Wang Y, Wang J, Guo H, Wu X, Hao M, et al. 2023. Integrative transcriptome and metabolome analysis reveals the mechanism of exogenous melatonin alleviating drought stress in maize roots. Plant Physiology and Biochemistry 199:107723

doi: 10.1016/j.plaphy.2023.107723
[47]

Naghizadeh M, Kabiri R, Hatami A, Oloumi H, Nasibi F, et al. 2019. Exogenous application of melatonin mitigates the adverse effects of drought stress on morpho-physiological traits and secondary metabolites in Moldavian balm (Dracocephalum moldavica). Physiology and Molecular Biology of Plants 25(4):881−94

doi: 10.1007/s12298-019-00674-4
[48]

Huang B, Chen YE, Zhao YQ, Ding CB, Liao JQ, et al. 2019. Exogenous melatonin alleviates oxidative damages and protects photosystem ii in maize seedlings under drought stress. Frontiers in Plant Science 10:677

doi: 10.3389/fpls.2019.00677
[49]

Li J, Zeng L, Cheng Y, Lu G, Fu G, et al. 2018. Exogenous melatonin alleviates damage from drought stress in Brassica napus L. (rapeseed) seedlings. Acta Physiologiae Plantarum 40(3):43

doi: 10.1007/s11738-017-2601-8
[50]

Khan Z, Jan R, Asif S, Farooq M, Jang YH, et al. 2024. Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Scientific Reports 14:1214

doi: 10.1038/s41598-024-51369-0
[51]

Imran M, Latif Khan A, Shahzad R, Aaqil Khan M, Bilal S, et al. 2021. Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB PLANTS 13(4):plab026

doi: 10.1093/aobpla/plab026
[52]

Jensen NB, Ottosen CO, Zhou R. 2023. Exogenous melatonin alters stomatal regulation in tomato seedlings subjected to combined heat and drought stress through mechanisms distinct from ABA signaling. Plants 12(5):1156

doi: 10.3390/plants12051156
[53]

Ahammed GJ, Li Z, Chen J, Dong Y, Qu K, et al. 2024. Reactive oxygen species signaling in melatonin-mediated plant stress response. Plant Physiology and Biochemistry 207:108398

doi: 10.1016/j.plaphy.2024.108398
[54]

Lee HJ, Back K. 2019. 2-Hydroxymelatonin confers tolerance against combined cold and drought stress in tobacco, tomato, and cucumber as a potent anti-stress compound in the evolution of land plants. Melatonin Research 2(2):35−46

doi: 10.32794/mr11250020
[55]

Wei Y, Liu G, Chang Y, Lin D, Reiter RJ, et al. 2018. Melatonin biosynthesis enzymes recruit WRKY transcription factors to regulate melatonin accumulation and transcriptional activity on W-box in cassava. Journal of Pineal Research 65:e12487

doi: 10.1111/jpi.12487
[56]

Wei Y, Chang Y, Zeng H, Liu G, He C, et al. 2018. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. Journal of Pineal Research 64:e12454

doi: 10.1111/jpi.12454
[57]

Li B, Liu R, Liu J, Zhang H, Tian Y, et al. 2024. ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings through the transcriptional regulation of ZmTOM7. New Crops 1:100012

doi: 10.1016/j.ncrops.2024.100012
[58]

Arnao MB, Hernández-Ruiz J. 2021. Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biology 23(S1):7−19

doi: 10.1111/plb.13202
[59]

Liu H, Song S, Zhang H, Li Y, Niu L, et al. 2022. Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. International Journal of Molecular Sciences 23(23):14824

doi: 10.3390/ijms232314824
[60]

Arnao MB, Hernández-Ruiz J. 2020. Melatonin in flowering, fruit set and fruit ripening. Plant Reproduction 33(2):77−87

doi: 10.1007/s00497-020-00388-8
[61]

Wang P, Sun X, Wang N, Tan DX, Ma F. 2015. Melatonin enhances the occurrence of autophagy induced by oxidative stress in Arabidopsis seedlings. Journal of Pineal Research 58(4):479−89

doi: 10.1111/jpi.12233
[62]

Cui G, Sun F, Gao X, Xie K, Zhang C, et al. 2018. Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.). Planta 248(1):69−87

doi: 10.1007/s00425-018-2881-2
[63]

Supriya L, Durgeshwar P, Muthamilarasan M, Padmaja G. 2022. Melatonin mediated differential regulation of drought tolerance in sensitive and tolerant varieties of upland cotton (Gossypium hirsutum L.). Frontiers in Plant Science 13:821353

doi: 10.3389/fpls.2022.821353
[64]

Altaf MA, Shahid R, Ren MX, Naz S, Altaf MM, et al. 2022. Melatonin improves drought stress tolerance of tomato by modulation plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants 11(2):309

doi: 10.3390/antiox11020309
[65]

Talaat NB. 2023. Drought stress alleviator melatonin reconfigures water-stressed barley (Hordeum vulgare L.) plants' photosynthetic efficiency, antioxidant capacity, and endogenous phytohormone profile. International Journal of Molecular Sciences 24(22):16228

doi: 10.3390/ijms242216228
[66]

Ahmad S, Muhammad I, Wang GY, Zeeshan M, Yang L, et al. 2021. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biologyogy 21(1):368

doi: 10.1186/s12870-021-03160-w
[67]

Ye J, Wang S, Deng X, Yin L, Xiong B, et al. 2016. Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiologiae Plantarum 38(2):48

doi: 10.1007/s11738-015-2045-y
[68]

Zou JN, Jin XJ, Zhang YX, Ren CY, Zhang MC, et al. 2019. Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress. Photosynthetica 57(2):512−20

doi: 10.32615/ps.2019.066
[69]

Ahmad S, Wang GY, Muhammad I, Farooq S, Kamran M, et al. 2022. Application of melatonin-mediated modulation of drought tolerance by regulating photosynthetic efficiency, chloroplast ultrastructure, and endogenous hormones in maize. Chemical and Biological Technologies in Agriculture 9(1):1−14

doi: 10.1186/s40538-021-00266-z
[70]

Guo YY, Li HJ, Liu J, Bai YW, Xue JQ, et al. 2020. Melatonin alleviates drought-induced damage of photosynthetic apparatus in maize seedlings. Russian Journal of Plant Physiology 67(2):312−22

doi: 10.1134/S1021443720020053
[71]

Wei J, Li DX, Zhang JR, Shan C, Rengel Z, et al. 2018. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. Journal of Pineal Research 65(2):e12500

doi: 10.1111/jpi.12500
[72]

Wang LF, Lu KK, Li TT, Zhang Y, Guo JX, et al. 2022. Maize PHYTOMELATONIN RECEPTOR1 functions in plant tolerance to osmotic and drought stress. Journal of Experimental Botany 73(17):5961−73

doi: 10.1093/jxb/erab553
[73]

Lee HY, Back K. 2020. The phytomelatonin receptor (PMRT1) Arabidopsis Cand2 is not a bona fide G protein–coupled melatonin receptor. Melatonin Research 3(2):177−86

doi: 10.32794/mr11250055
[74]

Zlotos DP, Jockers R, Cecon E, Rivara S, Witt-Enderby PA. 2014. MT1 and MT2 melatonin receptors: Ligands, models, oligomers, and therapeutic potential. Journal of Medicinal Chemistry 57(8):3161−85

doi: 10.1021/jm401343c
[75]

Lee HY, Back K. 2017. Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. Journal of Pineal Research 62(2):e12379

doi: 10.1111/jpi.12379
[76]

Maity S, Guchhait R, Pramanick K. 2022. Melatonin mediated activation of MAP kinase pathway may reduce DNA damage stress in plants: a review. BioFactors 48(5):965−71

doi: 10.1002/biof.1882
[77]

Song H, Sun Y, Shan D, Zhang T, Wang C, et al. 2023. MdMPK3 and MdMPK6 fine-tune MdWRKY17-mediated transcriptional activation of the melatonin biosynthesis gene MdASMT7. Journal of Pineal Research 75(1):e12891

doi: 10.1111/jpi.12891
[78]

Zhu W, Cao H, Wang Q, Niu Y, Sadeghnezhad E, et al. 2023. Transcriptome analysis revealed MAPK and hormone pathway involving in exogenous melatonin-regulated salt tolerance in sour jujube. Fruit Research 3:19

doi: 10.48130/FruRes-2023-0019
[79]

Li C, Tan DX, Liang D, Chang C, Jia D, et al. 2015. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany 66(3):669−80

doi: 10.1093/jxb/eru476
[80]

Li Z, Su X, Chen Y, Fan, X, He, L et al. 2021. Melatonin improves drought resistance in maize seedlings by enhancing the antioxidant system and regulating abscisic acid metabolism to maintain stomatal opening under PEG-induced drought. Journal of Plant Biology 64(4):299−312

doi: 10.1007/s12374-021-09297-3
[81]

Jahan MS, Zhao CJ, Shi LB, Liang, XR, Jabborova D, et al. 2023. Physiological mechanism of melatonin attenuating to osmotic stress tolerance in soybean seedlings. Frontiers in Plant Science 14:1193666

doi: 10.3389/fpls.2023.1193666
[82]

Ma X, Zhang J, Burgess P, Rossi S, Huang B. 2018. Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environmental and Experimental Botany 145:1−11

doi: 10.1016/j.envexpbot.2017.10.010
[83]

Fu J, Zhang S, Jiang H, Zhang X, Gao H, et al. 2022. Melatonin-induced cold and drought tolerance is regulated by brassinosteroids and hydrogen peroxide signaling in perennial ryegrass. Environmental and Experimental Botany 196:104815

doi: 10.1016/j.envexpbot.2022.104815
[84]

Zhang X, Liu W, Lv Y, Bai J, Li T, et al. 2022. Comparative transcriptomics reveals new insights into melatonin-enhanced drought tolerance in naked oat seedlings. PeerJ 10:e13669

doi: 10.7717/peerj.13669
[85]

Bai Y, Xiao S, Zhang Z, Zhang Y, Sun H, et al. 2020. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ 2020(7):e9450

doi: 10.7717/peerj.9450
[86]

Zhao C, Yang M, Wu X, Wang Y, Zhang R. 2021. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.). Plant Physiology and Biochemistry 168:128−42

doi: 10.1016/j.plaphy.2021.09.044
[87]

Afridi MS, Javed MA, Ali S, De Medeiros FHV, Ali B, et al. 2022. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Frontiers in Plant Science 13:899464

doi: 10.3389/fpls.2022.899464
[88]

Poudel M, Mendes R, Costa LAS, Bueno CG, Meng Y, et al. 2021. The role of plant-associated bacteria, fungi, and viruses in drought stress mitigation. Frontiers in Microbiology 12:743512

doi: 10.3389/fmicb.2021.743512
[89]

Ye F, Jiang M, Zhang P, Liu L, Liu S, et al. 2022. Exogenous melatonin reprograms the rhizosphere microbial community to modulate the responses of barley to drought stress. International Journal of Molecular Sciences 23(17):9665

doi: 10.3390/ijms23179665
[90]

Du P, Cao Y, Yin B, Zhou S, Li Z, et al. 2022. Improved tolerance of apple plants to drought stress and nitrogen utilization by modulating the rhizosphere microbiome via melatonin and dopamine. Frontiers in Plant Science 13:980327

doi: 10.3389/fmicb.2022.980327
[91]

Song Z, Yang Q, Dong B, Li N, Wang M, et al. 2022. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. Journal of Experimental Botany 73(17):5992−6008

doi: 10.1093/jxb/erac276
[92]

Zhao D, Luan Y, Shi W, Tang Y, Huang X, et al. 2022. Melatonin enhances stem strength by increasing lignin content and secondary cell wall thickness in herbaceous peony. Journal of Experimental Botany 73(17):5974−91

doi: 10.1093/jxb/erac165
[93]

Xiao L, Ma W, Zhang J, Pu X, Rengel Z, et al. 2023. Phytomelatonin interferes with flavonols biosynthesis to regulate ROS production and stomatal closure in tobacco. Journal of Plant Physiology 284:153977

doi: 10.1016/j.jplph.2023.153977