[1] |
Hu GL, Wang X, Zhang L, Qiu MH. 2019. The sources and mechanisms of bioactive ingredients in coffee. Food & Function 10:3113−26 doi: 10.1039/c9fo00288j |
[2] |
Wang X, Meng Q, Peng X, Hu G, Qiu M. 2018. Identification of new diterpene esters from green Arabica coffee beans, and their platelet aggregation accelerating activities. Food Chemistry 263:251−57 doi: 10.1016/j.foodchem.2018.04.081 |
[3] |
Hubert J, Nuzillard JM, Purson S, Hamzaoui M, Borie N, et al. 2014. Identification of natural metabolites in mixture: A pattern recognition strategy based on 13C NMR. Analytical Chemistry 86:2955−62 doi: 10.1021/ac403223f |
[4] |
Clendinen CS, Lee-McMullen B, Williams CM, Stupp GS, Vandenborne K, Hahn DA, Walter GA, Edison AS. 2014. 13C NMR metabolomics: Applications at natural abundance. Analytical Chemistry 86:9242−50 doi: 10.1021/ac502346h |
[5] |
Johansen KT, Wubshet SG, Nyberg NT. 2013. HPLC-NMR revisited: using time-slice high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance with database-assisted dereplication. Analytical Chemistry 85:3183−89 doi: 10.1021/ac303455j |
[6] |
Tabudravu JN, Pellissier L, Smith AJ, Subko K, Autréau C, et al. 2019. LC-HRMS-Database screening metrics for rapid prioritization of samples to accelerate the discovery of structurally new natural products. Journal of Natural Products 82:211−20 doi: 10.1021/acs.jnatprod.8b00575 |
[7] |
Li P, Anandhi Senthilkumar H, Figueroa M, Wu SB, Fata JE, et al. 2016. UPLC-QTOFMS(E)-guided dereplication of the endangered chinese species Garcinia paucinervis to identify additional benzophenone derivatives. Journal of Natural Products 79:1619−27 doi: 10.1021/acs.jnatprod.6b00186 |
[8] |
Wei W, Hou J, Yao C, Bi Q, Wang X, et al. 2019. A high-efficiency strategy integrating offline two-dimensional separation and data post-processing with dereplication: characterization of bufadienolides in Venenum Bufonis as a case study. Journal of Chromatography A 1603:179−89 doi: 10.1016/j.chroma.2019.06.037 |
[9] |
Nguyen DD, Wu CH, Moree WJ, Lamsa A, Medema MH, et al. 2013. MS/MS networking guided analysis of molecule and gene cluster families. Proceedings of the National Academy of Sciences of the United States of America 110:E2611−E2620 doi: 10.1073/pnas.1303471110 |
[10] |
Allard PM, Péresse T, Bisson J, Gindro K, Marcourt L, et al. 2016. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Analytical Chemistry 88:3317−23 doi: 10.1021/acs.analchem.5b04804 |
[11] |
Wu C, van der Heul HU, Melnik AV, Lübben J, Dorrestein PC, et al. 2019. Lugdunomycin, an angucycline-derived molecule with unprecedented chemical architecture. Angewandte Chemie - International Edition 58:2809−14 doi: 10.1002/anie.201814581 |
[12] |
Abbas-Mohammadi M, Farimani MM, Salehi P, Ebrahimi SN, Sonboli A, et al. 2022. Molecular networking based dereplication of AChE inhibitory compounds from the medicinal plant Vincetoxicum funebre (Boiss & Kotschy). Journal Of Biomolecular Structure & Dynamics 40:1942−51 doi: 10.1080/07391102.2020.1834455 |
[13] |
Wolfender JL, Litaudon M, Touboul D, Queiroz EF. 2019. Innovative omics-based approaches for prioritisation and targeted isolation of natural products - new strategies for drug discovery. Natural Product Reports 36:855−68 doi: 10.1039/c9np00004f |
[14] |
Hubert J, Nuzillard JM, Renault JH. 2017. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochemistry Reviews 16:55−95 doi: 10.1007/s11101-015-9448-7 |
[15] |
Moeenfard M, Alves A. 2020. New trends in coffee diterpenes research from technological to health aspects. Food Research International 134:109207 doi: 10.1016/j.foodres.2020.109207 |
[16] |
Bengis RO, Anderson RJ. 1932. The chemistry of the coffee-bean I. Concerning the unsaponifiable matter of the coffee-bean oil. Preparation and properties of kahweol. Journal of Biological Chemistry 97(1):99−113 |
[17] |
Iwamoto H, Izumi K, Kadono Y, Mizokami A. 2022. Anticancer effects of coffee diterpenes kahweol acetate and cafestol on prostate cancer. Cancer Science 113:1733−33 |
[18] |
Mellbye FB, Jeppesen PB, Shokouh P, Laustsen C, Hermansen K, et al. 2017. Cafestol a bioactive substance in coffee, has antidiabetic properties in KKAy mice. Journal of Natural Products 80:2353−59 doi: 10.1021/acs.jnatprod.7b00395 |
[19] |
Mellbye FB, Jeppesen PB, Hermansen K, Gregersen S. 2015. Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: Studies in Vitro. Journal of Natural Products 78:2447−51 doi: 10.1021/acs.jnatprod.5b00481 |
[20] |
Hu G, Peng X, Dong D, Nian Y, Gao Y, et al. 2020. New ent-kaurane diterpenes from the roasted arabica coffee beans and molecular docking to α-glucosidase. Food Chemistry 345:128823 doi: 10.1016/j.foodchem.2020.128823 |
[21] |
Hu G, Peng X, Gao Y, Huang Y, Li X, et al. 2020. Effect of roasting degree of coffee beans on sensory evaluation: Research from the perspective of major chemical ingredients. Food Chemistry 331:127329 doi: 10.1016/j.foodchem.2020.127329 |
[22] |
Hu GL, Gao Y, Peng XR, Liu JH, Su HG, et al. 2020. Lactam ent-Kaurane Diterpene: a new class of diterpenoids present in roasted beans of Coffea arabica. Journal of Agricultural and Food Chemistry 68:6112−21 doi: 10.1021/acs.jafc.9b08149 |
[23] |
Wei F, Furihata K, Hu F, Miyakawa T, Tanokura M. 2011. Two-dimensional 1H13C nuclear magnetic resonance (NMR)-based comprehensive analysis of roasted coffee bean extract. Journal of Agricultural and Food Chemistry 59:9065−73 doi: 10.1021/jf201716w |
[24] |
Ciaramelli C, Palmioli A, Airoldi C. 2019. Coffee variety, origin and extraction procedure: implications for coffee beneficial effects on human health. Food Chemistry 278:47−55 doi: 10.1016/j.foodchem.2018.11.063 |
[25] |
De Lucia M, Panzella L, Melck D, Giudicianni I, Motta A, et al. 2009. Differential reactivity of purified bioactive coffee furans, cafestol and kahweol, with acidic nitrite: Product characterization and factors controlling nitrosation versus ring-opening pathways. Chemical Research In Toxicology 22:1922−28 doi: 10.1021/tx900224x |