[1] |
McNutt M. 2013. Climate change impacts. Science 341:435 doi: 10.1126/science.1243256 |
[2] |
Ali N, Mujeeb-Kazi A. 2021. Food production: global challenges to mitigate climate change. In Physiological, Molecular, and Genetic Perspectives of Wheat Improvement, eds. Wani SH, Mohan A, Singh GP. Cham: Springer. pp. 1−13. https://doi.org/10.1007/978-3-030-59577-7_1 |
[3] |
Food and Agriculture Organization of the United Nations (FAO). 2016. AQUASTAT - FAO's Global Information System on Water and Agriculture. www.fao.org/aquastat/en (Accessed August 2024 |
[4] |
Hertel TW. 2015. The challenges of sustainably feeding a growing planet. Food Security 7(2):185−98 doi: 10.1007/s12571-015-0440-2 |
[5] |
Kurylyk BL, MacQuarrie KTB. 2013. The uncertainty associated with estimating future groundwater recharge: a summary of recent research and an example from a small unconfined aquifer in a northern humid-continental climate. Journal of Hydrology 492:244−53 doi: 10.1016/j.jhydrol.2013.03.043 |
[6] |
Baptista S, Brottem L, de Sherbinin A, Edquist M, Fischer A, et al. 2013. Background paper for the ARCC West Africa regional climate change vulnerability assessment. USAID African and Latin American Resilience to Climate Change (ARCC). www.crc.uri.edu/download/SUC09_WAF_policy_brief_english.pdf |
[7] |
Partey ST, Zougmoré RB, Ouédraogo M, Campbell BM. 2018. Developing climate-smart agriculture to face climate variability in West Africa: challenges and lessons learnt. Journal of Cleaner Production 187:285−95 doi: 10.1016/j.jclepro.2018.03.199 |
[8] |
Batino A, Waswa BS. 2011. New challenges and opportunities for integrated soil fertility management in Africa. In Innovations as Key to the Green Revolution in Africa: Exploring the Scientific Facts, eds. Bationo A, Waswa B, Okeyo JM, Maina F, Kihara J. Vol. 1. Dordrecht, The Netherlands: Springer. pp. 3−20. doi: 10.1007/978-90-481-2543-2_1 |
[9] |
Moorhead A. 2009. Climate change, agriculture and food security: a strategy for change. Alliance of the CGIAR Centers. https://hdl.handle.net/10568/33395 |
[10] |
Stuch B, Alcamo J, Schaldach R. 2021. Projected climate change impacts on mean and year-to-year variability of yield of key smallholder crops in Sub-Saharan Africa. Climate and Development 13:268−82 doi: 10.1080/17565529.2020.1760771 |
[11] |
Ehrlich PR, Harte J. 2015. Opinion: to feed the world in 2050 will require a global revolution. Proceedings of the National Academy of Sciences of the United States of America 112(48):14743−44 doi: 10.1073/pnas.1519841112 |
[12] |
Sultan B, Roudier P, Quirion P, Alhassane A, Muller B, et al. 2013. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environmental Research Letters 8:014040 doi: 10.1088/1748-9326/8/1/014040 |
[13] |
Faramarzi M, Abbaspour KC, Ashraf Vaghefi S, Farzaneh MR, Zehnder AJB, et al. 2013. Modeling impacts of climate change on freshwater availability in Africa. Journal of Hydrology 480:85−101 doi: 10.1016/j.jhydrol.2012.12.016 |
[14] |
Bruinsma J. 2009. The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050? In How to feed the World in 2050. Proceedings of a technical meeting of experts. pp. 1-33. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO). |
[15] |
Boretti A, Rosa L. 2019. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2(1):15 doi: 10.1038/s41545-019-0039-9 |
[16] |
Khan KS, Kunz R, Kleijnen J, Antes G. 2003. Five steps to conducting a systematic review. Journal of the Royal Society of Medicine 96:118−21 doi: 10.1177/014107680309600304 |
[17] |
Dixon-Woods M, Bonas S, Booth A, Jones DR, Miller T, et al. 2006. How can systematic reviews incorporate qualitative research? A critical perspective. Qualitative Research 6:27−44 doi: 10.1177/1468794106058867 |
[18] |
Ray DK, Gerber JS, MacDonald GK, West PC. 2015. Climate variation explains a third of global crop yield variability. Nature Communications 6:5989 doi: 10.1038/ncomms6989 |
[19] |
Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L, et al. 2015. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Security 7(2):303−21 doi: 10.1007/s12571-015-0446-9 |
[20] |
Guido Z, Zimmer A, Lopus S, Hannah C, Gower D, et al. 2020. Farmer forecasts: impacts of seasonal rainfall expectations on agricultural decision-making in Sub-Saharan Africa. Climate Risk Management 30:100247 doi: 10.1016/j.crm.2020.100247 |
[21] |
Gray E. 2021. Global Climate Change Impact on Crops Expected Within 10 Years, NASA Study Finds. https://climate.nasa.gov/news/3124/global-climate-change-impact-on-crops-expected-within-10-years-nasa-study-finds (Accessed on 2 November 2021 |
[22] |
Food and Agriculture Organization of the United Nations (FAOSTAT). 2022. FAOSTAT Statistical Database. Rome. https://fao.org/faostat/en/#compare (Assessed on 15 December 2022 |
[23] |
Cairns JE, Hellin J, Sonder K, Araus JL, MacRobert JF, et al. 2013. Adapting maize production to climate change in sub-Saharan Africa. Food Security 5:345−60 doi: 10.1007/s12571-013-0256-x |
[24] |
Singh BP, Setia R, Wiesmeier M, Kunhikrishnan A. 2018. Agricultural management practices and soil organic carbon storage. In Soil Carbon Storage. Amsterdam: Elsevier. pp. 207−44. doi: 10.1016/b978-0-12-812766-7.00007-x |
[25] |
Srivastava AK, Gaiser T, Paeth H, Ewert F. 2012. The impact of climate change on Yam (Dioscorea alata) yield in the savanna zone of West Africa. Agriculture, Ecosystems & Environment 153:57−64 doi: 10.1016/j.agee.2012.03.004 |
[26] |
Okoro UK, Akalazu JN, Nwulu NC. 2021. Near-term impact of climate variability on yam rot incidence over a humid tropical region: projections in CORDEX-Africa scenarios. Renewable Agriculture and Food Systems 36(5):477−90 doi: 10.1017/s1742170521000089 |
[27] |
Angba CW, Baines RN, Butler AJ. 2020. Examining yam production in response to climate change in Nigeria: a co-integration model approach. Social Sciences 9:42 doi: 10.3390/socsci9040042 |
[28] |
Okongor G, Njoku C, Essoka P, Efiong J. 2021. Climate variability and yam production: nexus and projections. Sarhad Journal of Agriculture 37(2):406−18 doi: 10.17582/journal.sja/2021/37.2.406.418 |
[29] |
Adifon FH, Atindogbé G, Bello DO, Balogoun I, Yabi I, et al. 2020. Effect of climate variability on yams (Dioscorea spp.) production in central and northern Benin. American Journal of Climate Change 9(4):423−40 doi: 10.4236/ajcc.2020.94027 |
[30] |
Mbanasor JA, Nwachukwu IN, Agwu NM, Onwusiribe NC. 2015. Impact of climate change on the productivity of cassava in Nigeria. Journal of Agriculture and Environmental Sciences 4(1):138−47 doi: 10.15640/jaes.v4n1a18 |
[31] |
Abewoy D. 2018. Review on impacts of climate change on vegetable production and its management practices. Advances in Crop Science and Technology 6:1−7 doi: 10.4172/2329-8863.1000330 |
[32] |
Bhardwaj ML. 2012. Effect of climate change on vegetable production in India in vegetable production under changing climate scenario. In Gardening Guidebook from Centre for Advanced Faculty Training in Horticulture (Vegetables), eds. Bhardwaj ML, Shama HD, Kumar M, Kumar R, Kansal S, et al. |
[33] |
Jat MK, Tetarwal AS. 2012. Effect of changing climate on the insect pest population national seminar on sustainable agriculture and food security: challenges in changing climate. Indian Journal of Horticulture. Hortic 2012(3):41−49 |
[34] |
Araya T, Cornelis WM, Nyssen J, Govaerts B, Getnet F, et al. 2012. Medium-term effects of conservation agriculture based cropping systems for sustainable soil and water management and crop productivity in the Ethiopian Highlands. Field Crops Research 132:53−62 doi: 10.1016/j.fcr.2011.12.009 |
[35] |
Wall PC, Thierfelder C, Ngwira A, Govaerts B, Nyagumbo I, et al. 2013. Conservation agriculture in Eastern and Southern Africa. In Conservation agriculture: global prospects and challenges, eds. Jat RA, Sahrawat KL, Kassam AH. UK: CABI. pp. 263−92. doi: 10.1079/9781780642598.0263 |
[36] |
Yeboah S, Lamptey S, Zhang R. 2018. Effects of different tillage and straw management systems on soil aggregation and crop yield in rainfed Loess Plateau. Advances in Agricultural Science 6(3):112−22 |
[37] |
Yeboah S, Zhang R, Cai L, Song M, Li L, et al. 2016. Greenhouse gas emissions in a spring wheat–field pea sequence under different tillage practices in semi-arid Northwest China. Nutrient Cycling in Agroecosystems 106:77−91 doi: 10.1007/s10705-016-9790-1 |
[38] |
Zhang RZ, Huang GB, Cai LQ, Luo ZZ, Li LL, et al. 2013. Dry farmland practice involving multi–conservation tillage measures in the Loess Plateau. Chinese Journal of Eco-Agriculture 21:61−69 (In Chinese) |
[39] |
Obia A, Cornelissen G, Martinsen V, Smebye AB, Mulder J. 2020. Conservation tillage and biochar improve soil water content and moderate soil temperature in a tropical Acrisol. Soil and Tillage Research 197:104521 doi: 10.1016/j.still.2019.104521 |
[40] |
Tambo JA, Mockshell J. 2018. Differential impacts of conservation agriculture technology options on household income in sub-saharan Africa. Ecological Economics 151:95−105 doi: 10.1016/j.ecolecon.2018.05.005 |
[41] |
Hirel B, Tétu T, Lea PJ, Dubois F. 2011. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3(9):1452−85 doi: 10.3390/su3091452 |
[42] |
Nyakudya IW, Stroosnijder L. 2015. Conservation tillage of rainfed maize in semi-arid Zimbabwe: a review. Soil and Tillage Research 145:184−97 doi: 10.1016/j.still.2014.09.003 |
[43] |
Pittelkow CM, Liang X, Linquist BA, van Groenigen KJ, Lee J, et al. 2015. Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365−68 doi: 10.1038/nature13809 |
[44] |
Valbuena D, Erenstein O, Homann-Kee Tui S, Abdoulaye T, Claessens L, et al. 2012. Conservation Agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crops Research 132:175−84 doi: 10.1016/j.fcr.2012.02.022 |
[45] |
Clements R, Haggar J, Quezada A, Torres J. 2011. Technologies for climate change adaptation: agricultural sector. TNA Guidebook Series. UNEP Risø Centre on Energy, Climate and Sustainable Development / Practical Action, Roskilde, Denmark. http://gala.gre.ac.uk/id/eprint/6848 |
[46] |
Hufnagel J, Reckling M, Ewert F. 2020. Diverse approaches to crop diversification in agricultural research. A review. Agronomy for Sustainable Development 40:14 doi: 10.1007/s13593-020-00617-4 |
[47] |
Huang JK, Jiang J, Wang JX, Hou LL. 2014. Crop diversification in coping with extreme weather events in China. Journal of Integrative Agriculture 13(4):677−86 doi: 10.1016/s2095-3119(13)60700-5 |
[48] |
Ignaciuk A, Sitko N, Scognamillo A, Alfani F, Kozlowska K. 2018. Is crop diversification a panacea for climate resilience in Africa? Welfare implications for heterogeneous households. FAO Agricultural Development Economics Policy Brief. Vol. 2. www.fao.org/3/a-i7762e.pdf |
[49] |
Lin BB. 2011. Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience 61(3):183−93 doi: 10.1525/bio.2011.61.3.4 |
[50] |
Vernooy R. 2015. Effective implementation of crop diversification strategies for Cambodia, Lao PDR and Vietnam: Insights from past experiences and ideas for new research. Bioversity International, Rome, Italy. |
[51] |
Lakhran HANSA, Kumar SANDEEP, Bajiya ROHITASH. 2017. Crop diversification: an option for climate change resilience. Trends in biosciences 10(2):516−18 |
[52] |
Khanam R, Bhaduri D, Nayak AK. 2018. Crop diversification: An important way-out for doubling farmers' income. Indian Framing 68(1):31−32 |
[53] |
Jacobs C, Berglund M, Kurnik B, Dworak T, Marras S, et al. 2019. Climate change adaptation in the agriculture sector in Europe. EEA Report No. 04. European Environment Agency (EEA). 108 pp. doi: 10.2800/537176 |
[54] |
Westengen OT, Brysting AK. 2014. Crop adaptation to climate change in the semi-arid zone in Tanzania: the role of genetic resources and seed systems. Agriculture & Food Security 3:3 doi: 10.1186/2048-7010-3-3 |
[55] |
Wambugu PW, Ndjiondjop MN, Henry RJ. 2018. Role of genomics in promoting the utilization of plant genetic resources in genebanks. Briefings in Functional Genomics 17(3):198−206 doi: 10.1093/bfgp/ely014 |
[56] |
Ngumbi E. 2019. Becoming drought resilient: Why African farmers must consider drought tolerant crops. https://reliefweb.int/report/world/becoming-drought-resilient-why-african-farmers-must-consider-drought-tolerant-crops |
[57] |
Tesfaye K, Kruseman G, Cairns JE, Zaman-Allah M, Wegary D, et al. 2018. Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. Climate Risk Management 19:106−19 doi: 10.1016/j.crm.2017.10.001 |
[58] |
Shaxson F, Barber R. 2003. Optimizing soil moisture for plant production: The significance of soil porosity. Rome, Italy: UN-FAO. www.fao.org/3/y4690e/y4690e00.htm |
[59] |
Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, et al. 2017. Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Frontiers in Plant Science 8:1950 doi: 10.3389/fpls.2017.01950 |
[60] |
van Etten J, de Sousa K, Aguilar A, Barrios M, Coto A, et al. 2019. Crop variety management for climate adaptation supported by citizen science. Proceedings of the National Academy of Sciences of the United States of America 116(10):4194−99 doi: 10.1073/pnas.1813720116 |
[61] |
Cacho OJ, Moss J, Thornton PK, Herrero M, Henderson B, et al. 2020. The value of climate-resilient seeds for smallholder adaptation in sub-Saharan Africa. Climatic Change 162:1213−29 doi: 10.1007/s10584-020-02817-z |
[62] |
Tofa AI, Kamara AY, Babaji BA, Akinseye FM, Bebeley JF. 2021. Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria. Scientific Reports 11:8983 doi: 10.1038/s41598-021-88277-6 |
[63] |
Ndjiondjop MN, Wambugu PW, Sangare JR, Gnikoua K. 2018. The effects of drought on rice cultivation in sub-Saharan Africa and its mitigation: a review. African Journal of Agricultural Research 13:1257−71 doi: 10.5897/ajar2018.12974 |
[64] |
Nair P, Nair V, Kumar BM, Showalter J. 2010. Chapter five. Carbon sequestration in agroforestry systems. Advances in Agronomy 108:237−307 doi: 10.1016/S0065-2113(10)08005-3 |
[65] |
Goncalves N, Andrade D, Batista A, Cullen L, Souza A, et al. 2021. Potential economic impact of carbon sequestration in coffee agroforestry systems. Agroforestry Systems 95:419−30 doi: 10.1007/s10457-020-00569-4 |
[66] |
Tetteh EN, Owusu Danquah E, Abunyewa AA, Melenya Ocansey C, Boakye EA, et al. 2021. Plantain-tree rubber intercropping systems improved productivity in the tropical humid zone of Ghana, West Africa. International Journal of Agronomy 2021:3240686 doi: 10.1155/2021/3240686 |
[67] |
Owusu Danquah E. 2020. Evaluation of Pigeon pea – White yam (Cajanus cajan [L.] Millsp–Dioscorea rotundata [L.] Poir) cropping system for improved yam productivity and livelihood of smallholder farmers. PhD. Thesis. Michigan State University, USA. https://dl.acm.org/doi/abs/10.5555/AAI28088311 |
[68] |
Schuler J, Voss AK, Ndah HT, Traore K, de Graaff J. 2016. A socioeconomic analysis of the zaï farming practice in northern Burkina Faso. Agroecology and Sustainable Food Systems 40:988−1007 doi: 10.1080/21683565.2016.1221018 |
[69] |
Wouterse F. 2017. Empowerment, climate change adaptation, and agricultural production: evidence from Niger. Climatic Change 145:367−82 doi: 10.1007/s10584-017-2096-8 |
[70] |
Lahmar R, Bationo BA, Dan Lamso N, Guéro Y, Tittonell P. 2012. Tailoring conservation agriculture technologies to West Africa semi-arid zones: building on traditional local practices for soil restoration. Field Crops Research 132:158−67 doi: 10.1016/j.fcr.2011.09.013 |
[71] |
Sawadogo H. 2011. Using soil and water conservation techniques to rehabilitate degraded lands in northwestern Burkina Faso. International Journal of Agricultural Sustainability 9:120−28 doi: 10.3763/ijas.2010.0552 |
[72] |
African Technology Policy Studies Network (ATPS). 2013. Indigenous Rainwater Harvesting Practices for Climate Adaptation and Food Security in Dry Areas: The Case of Bahi District [Deusdedit Kibassa]. ATPS Research Paper No. 22 |
[73] |
Karidjo BY, Wang Z, Boubacar Y, Wei C. 2018. Factors influencing farmers' adoption of soil and water control technology (SWCT) in keita valley, a semi-arid area of Niger. Sustainability 10:288 doi: 10.3390/su10020288 |
[74] |
Ojo TO, Baiyegunhi LJS, Adetoro AA, Ogundeji AA. 2021. Adoption of soil and water conservation technology and its effect on the productivity of smallholder rice farmers in Southwest Nigeria. Heliyon 7:e06433 doi: 10.1016/j.heliyon.2021.e06433 |
[75] |
Kpadonou RAB, Owiyo T, Barbier B, Denton F, Rutabingwa F, et al. 2017. Advancing climate-smart-agriculture in developing drylands: joint analysis of the adoption of multiple on-farm soil and water conservation technologies in West African Sahel. Land Use Policy 61:196−207 doi: 10.1016/j.landusepol.2016.10.050 |
[76] |
Jara-Rojas R, Bravo-Ureta BE, Engler A, Díaz J. 2013. An analysis of the joint adoption of water conservation and soil conservation in Central Chile. Land Use Policy 32:292−301 doi: 10.1016/j.landusepol.2012.11.001 |
[77] |
Jara-Rojas R, Bravo-Ureta BE, Díaz J. 2012. Adoption of water conservation practices: a socioeconomic analysis of small-scale farmers in Central Chile. Agricultural Systems 110:54−62 doi: 10.1016/j.agsy.2012.03.008 |