[1] |
Lukes J, Kaur B, Speijer D. 2021. RNA editing in mitochondria and plastids: weird and widespread. Trends in Genetics 37:99−102 doi: 10.1016/j.tig.2020.10.004 |
[2] |
Bass BL, Weintraub H. 1987. A developmentally regulated activity that unwinds RNA duplexes. Cell 48:607−13 doi: 10.1016/0092-8674(87)90239-X |
[3] |
Porath HT, Knisbacher BA, Eisenberg E, Levanon EY. 2017. Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biology 18:185 doi: 10.1186/s13059-017-1315-y |
[4] |
Zhang P, Zhu Y, Guo Q, Li J, Zhan X, et al. 2023. On the origin and evolution of RNA editing in metazoans. Cell Reports 42:112112 doi: 10.1016/j.celrep.2023.112112 |
[5] |
Liu H, Wang Q, He Y, Chen L, Hao C, et al. 2016. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes. Genome Res 26:499−509 doi: 10.1101/gr.199877.115 |
[6] |
Bian Z, Ni Y, Xu JR, Liu H. 2019. A-to-I mRNA editing in fungi: occurrence, function, and evolution. Cellular and Molecular Life Sciences 76:329−40 doi: 10.1007/s00018-018-2936-3 |
[7] |
Teichert I, Dahlmann TA, Kück U, Nowrousian M. 2017. RNA editing during sexual development occurs in distantly related filamentous ascomycetes. Genome Biology and Evolution 9:855−68 doi: 10.1093/gbe/evx052 |
[8] |
Liu H, Li Y, Chen D, Qi Z, Wang Q, et al. 2017. A-to-I RNA editing is developmentally regulated and generally adaptive for sexual reproduction in Neurospora crassa. Proceedings of the National Academy of Sciences of the United States of America 114:E7756−E7765 doi: 10.1073/pnas.1702591114 |
[9] |
Bar-Yaacov D, Mordret E, Towers R, Biniashvili T, Soyris C, et al. 2017. RNA editing in bacteria recodes multiple proteins and regulates an evolutionarily conserved toxin-antitoxin system. Genome Genome Research 27:1696−703 doi: 10.1101/gr.222760.117 |
[10] |
Wulff TF, Hahnke K, Lécrivain AL, Schmidt K, Ahmed-Begrich R, et al. 2024. Dynamics of diversified A-to-I editing in Streptococcus pyogenes is governed by changes in mRNA stability. Nucleic Acids Research 52(18):11234−53 doi: 10.1093/nar/gkae629 |
[11] |
Yang XZ, Sun TS, Jia PY, Li SJ, Li XG, et al. 2023. A-to-I RNA Editing in Klebsiella pneumoniae Regulates quorum sensing and affects cell growth and virulence. Advanced Science 10:e2206056 doi: 10.1002/advs.202206056 |
[12] |
Savva YA, Rieder LE, Reenan RA. 2012. The ADAR protein family. Genome Biology 13:252 doi: 10.1186/gb-2012-13-12-252 |
[13] |
Nishikura K. 2016. A-to-I editing of coding and non-coding RNAs by ADARs. Nature Reviews Molecular Cell Biology 17:83−96 doi: 10.1038/nrm.2015.4 |
[14] |
Vallecillo-Viejo IC, Voss G, Albertin CB, Liscovitch-Brauer N, Eisenberg E, et al. 2023. Squid express conserved ADAR orthologs that possess novel features. Frontiers in Genome Editing 5:1181713 doi: 10.3389/fgeed.2023.1181713 |
[15] |
Eisenberg E, Levanon EY. 2018. A-to-I RNA editing - immune protector and transcriptome diversifier. Nature Reviews Genetics 19:473−90 doi: 10.1038/s41576-018-0006-1 |
[16] |
Torres AG, Piñeyro D, Filonava L, Stracker TH, Batlle E, et al. 2014. A-to-I editing on tRNAs: biochemical, biological and evolutionary implications. FEBS Letters 588:4279−86 doi: 10.1016/j.febslet.2014.09.025 |
[17] |
Liao W, Nie W, Ahmad I, Chen G, Zhu B. 2023. The occurrence, characteristics, and adaptation of A-to-I RNA editing in bacteria: A review. Frontiers in Microbiology 14:1143929 doi: 10.3389/fmicb.2023.1143929 |
[18] |
Feng C, Xin K, Du Y, Zou J, Xing X, et al. 2024. Unveiling the A-to-I mRNA editing machinery and its regulation and evolution in fungi. Nature Communications 15:3934 doi: 10.1038/s41467-024-48336-8 |
[19] |
Shoshan Y, Liscovitch-Brauer N, Rosenthal JJC, Eisenberg E. 2021. Adaptive proteome diversification by nonsynonymous A-to-I RNA editing in coleoid cephalopods. Molecular Biology and Evolution 38:3775−88 doi: 10.1093/molbev/msab154 |
[20] |
Duan Y, Dou S, Luo S, Zhang H, Lu J. 2017. Adaptation of A-to-I RNA editing in Drosophila. PLoS Genetics 13:e1006648 doi: 10.1371/journal.pgen.1006648 |
[21] |
Yu Y, Zhou H, Kong Y, Pan B, Chen L, et al. 2016. The Landscape of A-to-I RNA Editome Is Shaped by Both Positive and Purifying Selection. PLoS Genetics 12:e1006191 doi: 10.1371/journal.pgen.1006191 |
[22] |
Feng C, Cao X, Du Y, Chen Y, Xin K, et al. 2022. Uncovering Cis-Regulatory Elements Important for A-to-I RNA Editing in Fusarium graminearum. mBio 13:e0187222 doi: 10.1128/mbio.01872-22 |
[23] |
Wang C, Xu JR, Liu H. 2016. A-to-I RNA editing independent of ADARs in filamentous fungi. RNA Biology 13:940−45 doi: 10.1080/15476286.2016.1215796 |
[24] |
Rosenthal JJC, Eisenberg E. 2023. Extensive recoding of the neural proteome in cephalopods by RNA Editing. Annual Review of Animal Biosciences 11:57−75 doi: 10.1146/annurev-animal-060322-114534 |
[25] |
Deffit SN, Hundley HA. 2016. To edit or not to edit: regulation of ADAR editing specificity and efficiency. WIREs RNA 7:113−27 doi: 10.1002/wrna.1319 |
[26] |
Nishikura K. 2010. Functions and regulation of RNA editing by ADAR deaminases. Annual Review of Biochemistry 79:321−49 doi: 10.1146/annurev-biochem-060208-105251 |
[27] |
Liu X, Sun T, Shcherbina A, Li Q, Jarmoskaite I, et al. 2021. Learning cis-regulatory principles of ADAR-based RNA editing from CRISPR-mediated mutagenesis. Nature Communications 12:2165 doi: 10.1038/s41467-021-22489-2 |
[28] |
Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, et al. 2017. Dynamic landscape and regulation of RNA editing in mammals. Nature 550:249−54 doi: 10.1038/nature24041 |
[29] |
Qi Z, Lu P, Long X, Cao X, Wu M, et al. 2024. Adaptive advantages of restorative RNA editing in fungi for resolving survival-reproduction trade-offs. Science Advances 10:eadk6130 doi: 10.1126/sciadv.adk6130 |
[30] |
Popitsch N, Huber CD, Buchumenski I, Eisenberg E, Jantsch M, et al. 2020. A-to-I RNA editing uncovers hidden signals of adaptive genome evolution in animals. Genome Biology and Evolution 12:345−57 doi: 10.1093/gbe/evaa046 |
[31] |
Moldovan M, Chervontseva Z, Bazykin G, Gelfand MS. 2020. Adaptive evolution at mRNA editing sites in soft-bodied cephalopods. PeerJ 8:e10456 doi: 10.7717/peerj.10456 |
[32] |
Gommans WM, Mullen SP, Maas S. 2009. RNA editing: a driving force for adaptive evolution? Bioessays 31: 1137-45 |
[33] |
Xu G, Zhang J. 2014. Human coding RNA editing is generally nonadaptive. Proceedings of the National Academy of Sciences of the United States of America 111:3769−74 doi: 10.1073/pnas.1321745111 |
[34] |
Alon S, Garrett SC, Levanon EY, Olson S, Graveley BR, et al. 2015. The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing. eLife 4:e05198 doi: 10.7554/eLife.05198 |
[35] |
Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R, et al. 2017. Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell 169:191−202.e11 doi: 10.1016/j.cell.2017.03.025 |
[36] |
Xu G, Zhang J. 2015. In search of beneficial coding RNA editing. Molecular Biology and Evolution 32:536−41 doi: 10.1093/molbev/msu314 |
[37] |
Wang Q, Jiang C, Liu H, Xu JR. 2016. ADAR-independent A-to-I RNA editing is generally adaptive for sexual reproduction in fungi. BioRxiv Preprint doi: 10.1101/059725 |
[38] |
Jiang D, Zhang J. 2019. The preponderance of nonsynonymous A-to-I RNA editing in coleoids is nonadaptive. Nature Communications 10:5411 doi: 10.1038/s41467-019-13275-2 |
[39] |
Liu J, Zheng C, Duan Y. 2024. New comparative genomic evidence supporting the proteomic diversification role of A-to-I RNA editing in insects. Molecular Genetics and Genomics 299:46 doi: 10.1007/s00438-024-02141-6 |
[40] |
Gray MW. 2012. Evolutionary origin of RNA editing. Biochemistry 51:5235−42 doi: 10.1021/bi300419r |
[41] |
Duan Y, Cai W, Li H. 2023. Chloroplast C-to-U RNA editing in vascular plants is adaptive due to its restorative effect: testing the restorative hypothesis. RNA 29:141−52 doi: 10.1261/rna.079450.122 |
[42] |
Xin K, Zhang Y, Fan L, Qi Z, Feng C, et al. 2023. Experimental evidence for the functional importance and adaptive advantage of A-to-I RNA editing in fungi. Proceedings of the National Academy of Sciences of the United States of America 120:e2219029120 doi: 10.1073/pnas.2219029120 |
[43] |
Paz-Yaacov N, Levanon EY, Nevo E, Kinar Y, Harmelin A, et al. 2010. Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proceedings of the National Academy of Sciences of the United States of America 107:12174−79 doi: 10.1073/pnas.1006183107 |
[44] |
Hao C, Yin J, Sun M, Wang Q, Liang J, et al. 2019. The meiosis-specific APC activator FgAMA1 is dispensable for meiosis but important for ascosporogenesis in Fusarium graminearum. Molecular Microbiology 111:1245−62 doi: 10.1111/mmi.14219 |
[45] |
Cao S, He Y, Hao C, Xu Y, Zhang H, et al. 2017. RNA editing of the AMD1 gene is important for ascus maturation and ascospore discharge in Fusarium graminearum. Scientific Reports 7:4617 doi: 10.1038/s41598-017-04960-7 |
[46] |
Lohmar JM, Rhoades NA, Patel TN, Proctor RH, Hammond TM, et al. 2022. A-to-I mRNA editing controls spore death induced by a fungal meiotic drive gene in homologous and heterologous expression systems. Genetics 221(1):iyac029 doi: 10.1093/genetics/iyac029 |
[47] |
Verstraeten N, Knapen WJ, Kint CI, Liebens V, Van den Bergh B, et al. 2015. Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Molecular Cell 59:9−21 doi: 10.1016/j.molcel.2015.05.011 |
[48] |
Nie W, Wang S, He R, Xu Q, Wang P, et al. 2020. A-to-I RNA editing in bacteria increases pathogenicity and tolerance to oxidative stress. PLoS Pathogens 16:e1008740 doi: 10.1371/journal.ppat.1008740 |
[49] |
Nie W, Wang S, Huang J, Xu Q, Wang P, et al. 2021. A-to-I mRNA editing in a ferric siderophore receptor improves competition for iron in Xanthomonas oryzae pv. oryzicola. Microbiology Spectrum 9:e0157121 doi: 10.1128/Spectrum.01571-21 |
[50] |
Heraud-Farlow JE, Chalk AM, Linder SE, Li Q, Taylor S, et al. 2017. Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome Biology 18:166 doi: 10.1186/s13059-017-1301-4 |
[51] |
Higuchi M, Maas S, Single FN, Hartner J, Rozov A, et al. 2000. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:78−81 doi: 10.1038/35017558 |
[52] |
Chalk AM, Taylor S, Heraud-Farlow JE, Walkley CR. 2019. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biology 20:268 doi: 10.1186/s13059-019-1873-2 |
[53] |
Ma L, Zheng C, Liu J, Song F, Tian L, et al. 2024. Learning from the codon table: convergent recoding provides novel understanding on the evolution of A-to-I RNA editing. Journal of Molecular Evolution 92:488−504 doi: 10.1007/s00239-024-10190-z |
[54] |
Wright AL, Konen LM, Mockett BG, Morris GP, Singh A, et al. 2023. The Q/R editing site of AMPA receptor GluA2 subunit acts as an epigenetic switch regulating dendritic spines, neurodegeneration and cognitive deficits in Alzheimer's disease. Molecular Neurodegeneration 18:65 doi: 10.1186/s13024-023-00632-5 |
[55] |
Wahlstedt H, Daniel C, Ensterö M, Ohman M. 2009. Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Research 19:978−86 doi: 10.1101/gr.089409.108 |
[56] |
Feldmeyer D, Kask K, Brusa R, Kornau HC, Kolhekar R, et al. 1999. Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nature Neuroscience 2:57−64 doi: 10.1038/4561 |
[57] |
Kask K, Zamanillo D, Rozov A, Burnashev N, Sprengel R, Seeburg PH. 1998. The AMPA receptor subunit GluR-B in its Q/R site-unedited form is not essential for brain development and function. Proceedings of the National Academy of Sciences of the United States of America 95:13777−82 doi: 10.1073/pnas.95.23.13777 |
[58] |
Wright A, Vissel B. 2012. The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain. Frontiers in molecular neuroscience 5:34 |
[59] |
Vissel B, Royle GA, Christie BR, Schiffer HH, Ghetti A, et al. 2001. The role of RNA editing of kainate receptors in synaptic plasticity and seizures. Neuron 29:217−27 doi: 10.1016/S0896-6273(01)00192-1 |
[60] |
Kawahara Y, Grimberg A, Teegarden S, Mombereau C, Liu S, et al. 2008. Dysregulated editing of serotonin 2C receptor mRNAs results in energy dissipation and loss of fat mass. The Journal of Neuroscience 28:12834−44 doi: 10.1523/JNEUROSCI.3896-08.2008 |
[61] |
Zhai J, Navakkode S, Yeow SQZ, Krishna KK, Liang MC, et al. 2022. Loss of CaV1.3 RNA editing enhances mouse hippocampal plasticity, learning, and memory. Proceedings of the National Academy of Sciences of the United States of America 119:e2203883119 doi: 10.1073/pnas.2203883119 |
[62] |
Jain M, Mann TD, Stulić M, Rao SP, Kirsch A, et al. 2018. RNA editing of Filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure. The EMBO Journal 37(19):e94813 doi: 10.15252/embj.201694813 |
[63] |
Jain M, Weber A, Maly K, Manjaly G, Deek J, et al. 2022. A-to-I RNA editing of Filamin A regulates cellular adhesion, migration and mechanical properties. The FEBS Journal 289:4580−601 doi: 10.1111/febs.16391 |
[64] |
Miyake K, Ohta T, Nakayama H, Doe N, Terao Y, et al. 2016. CAPS1 RNA Editing Promotes Dense Core Vesicle Exocytosis. Cell Reports 17:2004−14 doi: 10.1016/j.celrep.2016.10.073 |
[65] |
Sailer A, Swanson GT, Pérez-Otaño I, O’Leary L, Malkmus SA, et al. 1999. Generation and analysis of GluR5(Q636R) kainate receptor mutant mice. The Journal of Neuroscience 19:8757−64 doi: 10.1523/JNEUROSCI.19-20-08757.1999 |
[66] |
Keegan LP, Brindle J, Gallo A, Leroy A, Reenan RA, et al. 2005. Tuning of RNA editing by ADAR is required in Drosophila. EMBO Journal 24:2183−93 doi: 10.1038/sj.emboj.7600691 |
[67] |
Savva YA, Jepson JEC, Sahin A, Sugden AU, Dorsky JS, et al. 2012. Auto-regulatory RNA editing fine-tunes mRNA re-coding and complex behaviour in Drosophila. Nature Communications 3:790 doi: 10.1038/ncomms1789 |
[68] |
Zheng C, Liu J, Duan Y. 2024. Adaptive evolution of A-to-I auto-editing site in Adar of eusocial insects. BMC Genomics 25:803 doi: 10.1186/s12864-024-10709-0 |
[69] |
Zak H, Rozenfeld E, Levi M, Deng P, Gorelick D, et al. 2024. A highly conserved A-to-I RNA editing event within the glutamate-gated chloride channel GluClα is necessary for olfactory-based behaviors in Drosophila. Science Advances 10:eadi9101 doi: 10.1126/sciadv.adi9101 |
[70] |
Garrett SC, Rosenthal JJC. 2012. A role for A-to-I RNA editing in temperature adaptation. Physiology 27:362−9 doi: 10.1152/physiol.00029.2012 |
[71] |
Burnashev N, Monyer H, Seeburg PH, Sakmann B. 1992. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189−98 doi: 10.1016/0896-6273(92)90120-3 |
[72] |
Egebjerg J, Heinemann SF. 1993. Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proceedings of the National Academy of Sciences of the United States of America 90:755−59 doi: 10.1073/pnas.90.2.755 |
[73] |
Bhalla T, Rosenthal JJC, Holmgren M, Reenan R. 2004. Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nature Structural & Molecular Biology 11:950−56 doi: 10.1038/nsmb825 |
[74] |
Ryan MY, Maloney R, Reenan RA, Horn R. 2008. Characterization of five RNA editing sites in Shab potassium channels. Channels 2:202−9 doi: 10.4161/chan.2.3.6386 |
[75] |
Garrett S, Rosenthal JJC. 2012. RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science 335:848−51 doi: 10.1126/science.1212795 |
[76] |
Rosenthal JJC, Bezanilla F. 2002. Extensive editing of mRNAs for the squid delayed rectifier K+ channel regulates subunit tetramerization. Neuron 34:743−57 doi: 10.1016/S0896-6273(02)00701-8 |
[77] |
Colina C, Palavicini JP, Srikumar D, Holmgren M, Rosenthal JJ. 2010. Regulation of Na+/K+ ATPase transport velocity by RNA editing. PLoS Biology 8:e1000540 doi: 10.1371/journal.pbio.1000540 |
[78] |
Ingleby L, Maloney R, Jepson J, Horn R, Reenan R. 2009. Regulated RNA editing and functional epistasis in Shaker potassium channels. The Journal of General Physiology 133:17−27 doi: 10.1085/jgp.200810133 |
[79] |
Ryan MY, Maloney R, Fineberg JD, Reenan RA, Horn R. 2012. RNA editing in eag potassium channels: biophysical consequences of editing a conserved S6 residue. Channels 6:443−52 doi: 10.4161/chan.22314 |
[80] |
Rula EY, Lagrange AH, Jacobs MM, Hu N, Macdonald RL, et al. 2008. Developmental modulation of GABAA receptor function by RNA editing. The Journal of Neuroscience 28:6196−201 doi: 10.1523/JNEUROSCI.0443-08.2008 |
[81] |
Patton DE, Silva T, Bezanilla F. 1997. RNA editing generates a diverse array of transcripts encoding squid Kv2 K+ channels with altered functional properties. Neuron 19:711−22 doi: 10.1016/S0896-6273(00)80383-9 |
[82] |
Birk MA, Liscovitch-Brauer N, Dominguez MJ, McNeme S, Yue Y, et al. 2023. Temperature-dependent RNA editing in octopus extensively recodes the neural proteome. Cell 186:2544−2555.e13 doi: 10.1016/j.cell.2023.05.004 |
[83] |
Rangan KJ, Reck-Peterson SL. 2023. RNA recoding in cephalopods tailors microtubule motor protein function. Cell 186:2531−2543.e11 doi: 10.1016/j.cell.2023.04.032 |
[84] |
Chen D, Wu C, Hao C, Huang P, Liu H, et al. 2018. Sexual specific functions of Tub1 beta-tubulins require stage-specific RNA processing and expression in Fusarium graminearum. Environmental Microbiology 20:4009−21 doi: 10.1111/1462-2920.14441 |
[85] |
Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, et al. 1995. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270:1677−80 doi: 10.1126/science.270.5242.1677 |
[86] |
Wang Q, O'Brien PJ, Chen CX, Cho DSC, Murray JM, et al. 2000. Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. Journal of Neurochemistry 74:1290−300 doi: 10.1046/j.1471-4159.2000.741290.x |
[87] |
Shumate KM, Tas ST, Kavalali ET, Emeson RB. 2021. RNA editing-mediated regulation of calcium-dependent activator protein for secretion (CAPS1) localization and its impact on synaptic transmission. Journal of Neurochemistry 158:182−96 doi: 10.1111/jnc.15372 |
[88] |
Niswender CM, Copeland SC, Herrick-Davis K, Emeson RB, Sanders-Bush E. 1999. RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. Journal of Biological Chemistry 274:9472−8 doi: 10.1074/jbc.274.14.9472 |
[89] |
Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, et al. 1997. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303−8 doi: 10.1038/387303a0 |
[90] |
Huang H, Tan BZ, Shen Y, Tao J, Jiang F, et al. 2012. RNA editing of the IQ domain in Cav1.3 channels modulates their Ca2+-dependent inactivation. Neuron 73:304−16 doi: 10.1016/j.neuron.2011.11.022 |
[91] |
Bazzazi H, Ben Johny M, Adams PJ, Soong TW, Yue DT. 2013. Continuously tunable Ca(2+) regulation of RNA-edited CaV1.3 channels. Cell Reports 5:367−77 doi: 10.1016/j.celrep.2013.09.006 |
[92] |
Lomeli H, Mosbacher J, Melcher T, Höger T, Geiger JR, et al. 1994. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709−13 doi: 10.1126/science.7992055 |
[93] |
Streit AK, Matschke LA, Dolga AM, Rinné S, Decher N. 2014. RNA editing in the central cavity as a mechanism to regulate surface expression of the voltage-gated potassium channel Kv1.1. Journal of Biological Chemistry 289:26762−71 doi: 10.1074/jbc.M113.545731 |
[94] |
Yeo J, Goodman RA, Schirle NT, David SS, Beal PA. 2010. RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1. Proceedings of the National Academy of Sciences of the United States of America 107:20715−19 doi: 10.1073/pnas.1009231107 |
[95] |
Lotsof ER, Krajewski AE, Anderson-Steele B, Rogers J, Zhang L, et al. 2022. NEIL1 recoding due to RNA editing impacts lesion-specific recognition and excision. Journal of the American Chemical Society 144:14578−89 doi: 10.1021/jacs.2c03625 |
[96] |
Fu L, Qin YR, Ming XY, Zuo XB, Diao YW, et al. 2017. RNA editing of SLC22A3 drives early tumor invasion and metastasis in familial esophageal cancer. Proceedings of the National Academy of Sciences of the United States of America 114:4631−36 doi: 10.1073/pnas.1619960114 |
[97] |
Song Y, An O, Ren X, Chan THM, Tay DJT, et al. 2021. RNA editing mediates the functional switch of COPA in a novel mechanism of hepatocarcinogenesis. Journal of Hepatology 74:135−47 doi: 10.1016/j.jhep.2020.07.021 |
[98] |
Shimokawa T, Rahman MF, Tostar U, Sonkoly E, Ståhle M, et al. 2013. RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling. RNA Biology 10:321−33 doi: 10.4161/rna.23343 |
[99] |
Chen L, Li Y, Lin CH, Chan THM, Chow RKK, et al. 2013. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nature Medicine 19:209−16 doi: 10.1038/nm.3043 |
[100] |
Han SW, Kim HP, Shin JY, Jeong EG, Lee WC, et al. 2014. RNA editing in RHOQ promotes invasion potential in colorectal cancer. Journal of Experimental Medicine 211:613−21 doi: 10.1084/jem.20132209 |
[101] |
Chen YB, Liao XY, Zhang JB, Wang F, Qin HD, et al. 2017. ADAR2 functions as a tumor suppressor via editing IGFBP7 in esophageal squamous cell carcinoma. International Journal of Oncology 50(2):622−30 doi: 10.3892/ijo.2016.3823 |