[1]

Tabata R, Kamiya T, Imoto S, Tamura H, Ikuta K, et al. 2022. Systemic regulation of iron acquisition by Arabidopsis in environments with heterogeneous iron distributions. Plant and Cell Physiology 63:842−54

doi: 10.1093/pcp/pcac049
[2]

Zargar SM, Agrawal GK, Rakwal R, Fukao Y. 2015. Quantitative proteomics reveals role of sugar in decreasing photosynthetic activity due to Fe deficiency. Frontiers in Plant Science 6:592

doi: 10.3389/fpls.2015.00592
[3]

Zhang X, Zhang D, Sun W, Wang T. 2019. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. International Journal of Molecular Sciences 20:2424

doi: 10.3390/ijms20102424
[4]

Briat JF, Dubos C, Gaymard F. 2015. Iron nutrition, biomass production, and plant product quality. Trends in Plant Science 20:33−40

doi: 10.1016/j.tplants.2014.07.005
[5]

Chen HM, Wang YM, Yang HL, Zeng QY, Liu YJ. 2019. NRAMP1 promotes iron uptake at the late stage of iron deficiency in poplars. Tree Physiology 7:1235−50

doi: 10.1093/treephys/tpz055
[6]

İncesu M, Yeşiloğlu T, Tuzcu O, Çimen B. 2015. Differential tolerance to iron deficiency of citrus rootstocks grown in calcareous soil. Acta Horticulturae 1065:1431−36

doi: 10.17660/ActaHortic.2015.1065.181
[7]

Zhang ZX, Zhang R, Wang SC, Zhang D, Zhao T, et al. 2022. Identification of Malus halliana R2R3-MYB gene family under iron deficiency stress and functional characteristics of MhR2R3-MYB4 in Arabidopsis thaliana. Plant Biology 24:344−55

doi: 10.1111/plb.13373
[8]

Kawanabe S, Zhu T. 1991. Degeneration and conservational trial of Aneurolepidium chinense grassland in Northern China. Japanese Journal of Grassland Science 37:91−99

doi: 10.14941/grass.37.91
[9]

Cheng L, Zhao T, Wu YX, Wang H, Zhang ZX, et al. 2020. Identification of AP2/ERF genes in apple (Malus × domestica) and demonstration that MdERF017 enhances iron deficiency tolerance. Plant Cell, Tissue and Organ Culture 143:465−82

doi: 10.1007/s11240-020-01925-z
[10]

Dotaniya ML, Meena HM, Lata M, Kumar K. 2013. Role of phytosiderophores in iron uptake by plants. Agricultural Science Digest 33:73−76

[11]

Fernández V, Del Río V, Abadía J, Abadía A. 2006. Foliar iron fertilization of peach (Prunus persica (L.) Batsch): effects of iron compounds, surfactants and other adjuvants. Plant and Soil 289:239−52

doi: 10.1007/s11104-006-9132-1
[12]

Wang FP, Wang XF, Zhang J, Ma F, Hao YJ. 2018. MdMYB58 modulates Fe homeostasis by directly binding to the MdMATE43 promoter in plants. Plant and Cell Physiology 59:2476−89

doi: 10.1093/pcp/pcy168
[13]

Han D, Wang Y, Zhang Z, Pu Q, Ding H, et al. 2017. Isolation and functional analysis of MxCS3: a gene encoding a citrate synthase in Malus xiaojinensis, with functions in tolerance to iron stress and abnormal flower in transgenic Arabidopsis thaliana. Plant Growth Regulation 82:479−89

doi: 10.1007/s10725-017-0274-3
[14]

Han D Zhang Z, Ni B, Ding H, Liu W, et al. 2018. Isolation and functional analysis of MxNAS3 involved in enhanced iron stress tolerance and abnormal flower in transgenic Arabidopsis. Journal of Plant Interactions 13:433−41

doi: 10.1080/17429145.2018.1499145
[15]

Han D, Xu T, Han J, Liu W, Wang Y, et al. 2022. Overexpression of MxWRKY53 increased iron and high salinity stress tolerance in Arabidopsis thaliana. In Vitro Cellular & Developmental Biology - Plant 58:266−78

doi: 10.1007/s11627-021-10241-w
[16]

Terry N, Abadía J. 1986. Function of iron in chloroplasts. Journal of Plant Nutrition 9:609−46

doi: 10.1080/01904168609363470
[17]

Kale R, Hebert AE, Frankel LK, Sallans L, Bricker TM, et al. 2017. Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of photosystem II. Proceedings of the National Academy of Sciences of the United States of America 114:2988−93

doi: 10.1073/pnas.1618922114
[18]

Rochaix JD. 2014. Regulation and dynamics of the light-harvesting system. Annual Review of Plant Biology 65:287−309

doi: 10.1146/annurev-arplant-050213-040226
[19]

Zhao S, Gao H, Luo J, Wang H, Dong Q, et al. 2020. Genome-wide analysis of the light harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4.3, which confers tolerance to drought and osmotic stress. Plant Physiology and Biochemistry 154:517−29

doi: 10.1016/j.plaphy.2020.06.022
[20]

Zhang Q, Ma C, Wang X, Ma Q, Fan S, et al. 2021. Genome-wide identification of the light-harvesting chlorophyll a/b binding (Lhc) family in Gossypium hirsutum reveals the influence of GhLhcb2.3 on chlorophyll a synthesis. Plant Biology 23:831−42

doi: 10.1111/plb.13294
[21]

Elias E, Liguori N, Saga Y, Schäfers J, Croce R. 2021. Harvesting far-red light with plant antenna complexes incorporating chlorophyll d. Biomacromolecules 22:3313−22

doi: 10.1021/acs.biomac.1c00435
[22]

Najafpour MM, Allakhverdiev SI. 2015. Recent progress in the studies of structure and function of photosystems I and II. Journal of Photochemistry and Photobiology B: Biology 152:173−75

doi: 10.1016/j.jphotobiol.2015.11.003
[23]

Albanese P, Manfredi M, Meneghesso A, Marengod E, Saraccoe G, et al. 2016. Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1857:1651−60

doi: 10.1016/j.bbabio.2016.06.011
[24]

Aghdasi M, Schluepman H. 2009. Cloning and expression analysis of two photosynthetic genes, PSI-H and LHCB1, under trehalose feeding conditions in Arabidipsis seedlings. Iranian Journal of Biotechnology 7:179−187,190

[25]

Su X, Ma J, Wei X, Cao P, Zhu D, et al. 2017. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII super complex. Science 357:815−20

doi: 10.1126/science.aan0327
[26]

Zhu W, Xu L, Yu X, Zhong Y. 2022. The immunophilin CYCLOPHILIN28 affects PSII-LHCII supercomplex assembly and accumulation in Arabidopsis thaliana. Journal of Integrative Plant Biology 64:915−29

doi: 10.1111/jipb.13235
[27]

Yan M, Yuan Z. 2020. Genome-wide analysis of the family of light-harvesting chlorophyll a/b-binding proteins in pomegranate (Punica granatum L.). Acta Horticulturae 1297:647−52

[28]

Xia Y, Ning Z, Bai G, Li R, Yan G, et al. 2012. Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (LHCB1) associated with agronomic traits in barley. PLoS One 7:e37573

doi: 10.1371/journal.pone.0037573
[29]

Xu YH, Liu R, Yan L, Liu ZQ, Jiang SC, et al. 2012. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. Journal of Experimental Botany 63:1095−106

doi: 10.1093/jxb/err315
[30]

Andersson J, Wentworth M, Walters RG, Howard CA, Ruban AV, et al. 2003. Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II: effects on photosynthesis, grana stacking and fitness. The Plant Journal 35:350−61

doi: 10.1046/j.1365-313X.2003.01811.x
[31]

Jiang Q, Xu ZS, Wang F, Li MY, Ma J, et al. 2014. Effects of abiotic stresses on the expression of Lhcb1 gene and photosynthesis of Oenanthe javanica and Apium graveolens. Biologia Plantarum 58:256−64

doi: 10.1007/s10535-014-0396-7
[32]

Deng YS, Kong FY, Zhou B, Zhang S, Yue MM, et al. 2014. Heterology expression of the tomato Lelhcb2 gene confers elevated tolerance to chilling stress in transgenic tobacco. Plant Physiology and Biochemistry 80:318−27

doi: 10.1016/j.plaphy.2014.04.017
[33]

Fan P, Feng J, Jiang P, Chen X, Bao H, et al. 2011. Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: comparative proteomic analysis on chloroplast proteins. Proteomics 11:4346−67

doi: 10.1002/pmic.201100054
[34]

Zhan J, Zhu X, Zhou W, Chen H, He C, et al. 2016. Thf1 interacts with PS I and stabilizes the PS I complex in Synechococcus sp. PCC7942. Molecular Microbiology 102:738−51

doi: 10.1111/mmi.13488
[35]

Park SY, Yu JW, Park JS, Li J, Yoo SC, et al. 2007. The senescence-induced staygreen protein regulates chlorophyll degradation. The Plant Cell 19:1649−64

doi: 10.1105/tpc.106.044891
[36]

Peng L, Shikanai T. 2011. Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Physiology 155:1629−39

doi: 10.1104/pp.110.171264
[37]

Ganeteg U, Klimmek F, Jansson S. 2004. Lhca5 – an LHC-type protein associated with photosystem I. Plant Molecular Biology 54:641−51

doi: 10.1023/B:PLAN.0000040813.05224.94
[38]

Guo A, Hu Y, Shi M, Wang H, Wu Y, et al. 2020. Effects of iron deficiency and exogenous sucrose on the intermediates of chlorophyll biosynthesis in Malus halliana. PLoS One 15:e0232694

doi: 10.1371/journal.pone.0232694
[39]

Han ZH, Wang Q, Shen T. 1994. Comparison of some physiological and biochemical characteristics between iron-efficient and iron-inefficient species in the genus Malus. Journal of Plant Nutrition 17:1257−64

doi: 10.1080/01904169409364803
[40]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[41]

Hu DG, Sun MH, Sun CH, Liu X, Zhang QY, et al. 2015. Conserved vacuolar H+-ATPase subunit B1 improves salt stress tolerance in apple calli and tomato plants. Scientia Horticulturae 197:107−16

doi: 10.1016/j.scienta.2015.09.019
[42]

Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA. 2002. GLK gene pairs regulate chloroplast development in diverse plant. The Plant Journal 31:713−27

doi: 10.1046/j.1365-313X.2002.01390.x
[43]

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248−54

doi: 10.1016/0003-2697(76)90527-3
[44]

Wu M, Liu H, Gao Y, Shi Y, Pan F, et al. 2020. The moso bamboo drought-induced 19 protein PheDi19-8 functions oppositely to its interacting partner, PheCDPK22, to modulate drought stress tolerance. Plant Science 299:110605

doi: 10.1016/j.plantsci.2020.110605
[45]

Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, Del Río LA, et al. 2004. Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant, Cell & Environment 27:1122−34

doi: 10.1111/j.1365-3040.2004.01217.x
[46]

Schikora A, Schmidt W. 2001. Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability. Plant Physiology 125:1679−87

doi: 10.1104/pp.125.4.1679
[47]

Mandal Š, Banjanin B, Kujović I, Malenica M. 2015. Spectrophotometric determination of total iron content in black tea. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina 44:29−32

[48]

Zhao Q, Ren YR, Wang QJ, Yao YX, You CX, et al. 2016. Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple. Plant Biotechnol Journal 14:1633−45

doi: 10.1111/pbi.12526
[49]

Hey D, Grimm B. 2018. ONE-HELIX PROTEIN2 (OHP2) is required for the stability of OHP1 and assembly factor HCF244 and is functionally linked to PSII biogenesis. Plant Physiology 177:1453−72

doi: 10.1104/pp.18.00540
[50]

Alboresi A, Caffarri S, Nogue F, Bassi R, Morosinotto T. 2008. In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. PLoS One 3:e2033

doi: 10.1371/journal.pone.0002033
[51]

Zhao Y, Kong H, Guo Y, Zou Z. 2020. Light-harvesting chlorophyll a/b-binding protein-coding genes in jatropha and the comparison with Castor, Cassava and Arabidopsis. Peer J 8:e8465

doi: 10.7717/peerj.8465
[52]

Umate P. 2010. Genome-wide analysis of the family of light harvesting chlorophyll a/b-binding proteins in Arabidopsis and rice. Plant Signaling & Behavior 5:1537−42

doi: 10.4161/psb.5.12.13410
[53]

Singh J, Pandey P, James D, Chandrasekhar K, Achary VMM, et al. 2014. Enhancing C3 photosynthesis: an outlook on feasible interventions for crop improvement. Plant Biotechnology Journal 12:1217−30

doi: 10.1111/pbi.12246
[54]

Kong F, Zhou Y, Sun P, Gao M, Li H, et al. 2016. Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions. Journal of Ocean University of China 15:152−62

doi: 10.1007/s11802-016-2688-3
[55]

Liu R, Xu YH, Jiang SC, Lu K, Lu YF, et al. 2013. Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signaling, require a transcription repressor, WRKY40, to balance their function. Journal of Experimental Botany 64:5443−56

doi: 10.1093/jxb/ert307
[56]

Girardi CL, Rombaldi CV, Cero JD, Nobile PM, Laurens F, et al. 2013. Genome-wide analysis of the AP2/ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis. Scientia Horticulturae 151:112−21

doi: 10.1016/j.scienta.2012.12.017
[57]

Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum 147:15−27

doi: 10.1111/j.1399-3054.2012.01635.x
[58]

Luo J, Abid M, Tu J, Gao P, Wang Z, et al. 2022. Genome-wide identification of the LHC gene family in kiwifruit and regulatory role of AcLhcb3.1/3.2 for chlorophyll a content. International Journal of Molecular Sciences 23:6528

doi: 10.3390/ijms23126528
[59]

Myouga F, Takahashi K, Tanaka R, Nagata N, Kiss AZ, et al. 2018. Stable accumulation of photosystem II requires ONE-HELIX PROTEIN1 (OHP1) of the light harvesting-like family. Plant Physiology 176:2277−91

doi: 10.1104/pp.17.01782
[60]

Wu R, Ran K, Zhao S, Cheng F. 2023. Genome-wide identification of the light-harvesting chlorophyll a/b binding protein gene family in Pyrus bretschneideri and their transcriptomic features under drought stress. Horticulturae 9:522

doi: 10.3390/horticulturae9050522
[61]

Saito A, Shimizu M, Nakamura H, Maeno S, Katase R, et al. 2014. Fe deficiency induces phosphorylation and translocation of Lhcb1 in barley thylakoid membranes. FEBS Letters 588:2042−48

doi: 10.1016/j.febslet.2014.04.031
[62]

Zuo Z, Chen Z, Zhu Y, Bai Y, Wang Y. 2014. Effects of NaCl and Na2CO3 stresses on photosynthetic ability of Chlamydomonas reinhardtii. Biologia 69:1314−22

doi: 10.2478/s11756-014-0437-x
[63]

Farquhar GD, Sharkey TD. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33:317−45

doi: 10.1146/annurev.pp.33.060182.001533
[64]

Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science 4:580−85

[65]

Ji S, Zhang Y, Xu M, Zhao M, Chen H, et al. 2024. Characterization of low-temperature sensitivity and chlorophyll fluorescence in yellow leaf mutants of tomato. Agronomy 14:2382

doi: 10.3390/agronomy14102382
[66]

Maxwell K, Johnson GN. 2000. Chlorophyll Fluorescence—a practical guide. Journal of Experimental Botany 51:659−68

doi: 10.1093/jexbot/51.345.659
[67]

Ali S, Xu Y, Jia Q, Ma X, Ahmad I, et al. 2018. Interactive effects of plastic film mulching with supplemental irrigation on winter wheat photosynthesis, chlorophyll fluorescence and yield under simulated precipitation conditions. Agricultural Water Management 207:1−14

doi: 10.1016/j.agwat.2018.05.013
[68]

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell & Environment 33:453−67

doi: 10.1111/j.1365-3040.2009.02041.x
[69]

Javaux M, Schroder T, Vanderborght J, Vereecken H. 2008. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone Journal 7:1079−88

doi: 10.2136/vzj2007.0115
[70]

Rahdari P, Tavakoli S, Hosseini SM. 2012. Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in Purslane (Portulaca oleracea L.) leaves. Journal of Stress Physiology & Biochemistry 8:182−93

[71]

Zhang L, Wang X, Shi Q, Gao Q, Liu Z. 2008. Differences of physiological responses of cucumber seedlings to NaCl and NaHCO3 stress. Chinese Journal of Applied Ecology 19:1854−59

[72]

Tang L, Cai H, Ji W, Luo X, Wang Z, et al. 2013. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry 71:22−30

doi: 10.1016/j.plaphy.2013.06.024
[73]

Incesu M, Yesiloglu T, Tuzcu O, Cimen B, Yilmaz B. 2016. Response of Citrus rootstocks to iron deficiency under high pH conditions. Citrus Research & Technology 37:66−75

doi: 10.4322/crt.ICC056
[74]

Santi S, Schmidt W. 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytologist 183:1072−84

doi: 10.1111/j.1469-8137.2009.02908.x
[75]

Waadt R, Schmidt LK, Lohse M, Hashimoto K, Kudla J. 2008. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. The Plant Journal 56:505−16

doi: 10.1111/j.1365-313X.2008.03612.x
[76]

Barry CS, McQuinn RP, Chung MY, Besuden A, Giovannoni JJ. 2008. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiology 147:179−87

doi: 10.1104/pp.108.118430
[77]

Garmier M, Carroll AJ, Delannoy E, Vallet C, Day DA, et al. 2008. Complex I dysfunction redirects cellular and mitochondrial metabolism in Arabidopsis. Plant Physiology 148:1324−41

doi: 10.1104/pp.108.125880
[78]

Meyer EH, Tomaz T, Carroll AJ, Estavillo G, Delannoy E, et al. 2009. Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night. Plant Physiology 151:603−19

doi: 10.1104/pp.109.141770
[79]

Zhou C, Wee S, Rhee E, Naumann M, Dubiel W, et al. 2003. Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzyme Ubp12p. Molecular Cell 11:927−38

doi: 10.1016/S1097-2765(03)00136-9
[80]

Wang J, Yu Y, Zhang Z, Quan R, Zhang H, et al. 2013. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. The Plant Cell 25(2):625−36

doi: 10.1105/tpc.112.106880