[1] |
Brodowska KM. 2017. Natural flavonoids: classification, potential role, and application of flavonoid analogues. European Journal of Cell Biology 7:108−23 |
[2] |
Sun L, Huo J, Liu J, Yu J, Zhou J, et al. 2023. Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chemistry 411:135540 doi: 10.1016/j.foodchem.2023.135540 |
[3] |
Wu Y, Han T, Lyu L, Li W, Wu W. 2023. Research progress in understanding the biosynthesis and regulation of plant anthocyanins. Scientia Horticulturae 321:112374 doi: 10.1016/j.scienta.2023.112374 |
[4] |
Zhao Y, Sun J, Cherono S, An J, Allan AC, et al. 2023. Colorful hues: insight into the mechanisms of anthocyanin pigmentation in fruit. Plant Physiology 192:1718−32 doi: 10.1093/plphys/kiad160 |
[5] |
Gutterson NC. 1993. Molecular breeding for color, flavor and fragrance. Scientia Horticulturae 55:141−60 doi: 10.1016/0304-4238(93)90029-P |
[6] |
Boldt JK, Meyer MH, Erwin JE. 2014. Foliar anthocyanins: a horticultural review. In Horticultural Reviews, ed. Janick J. US: Wiley‐Blackwell. Volume 42. pp. 209−52. doi: 10.1002/9781118916827.ch04 |
[7] |
Wang J, Gu X, Dong Y, Wang T, Sun Q, et al. 2023. Advances in the endogenous and exogenous regulation of anthocyanins–the key to color change in eudicots. Critical Reviews in Plant Sciences 42:217−38 doi: 10.1080/07352689.2023.2227485 |
[8] |
Li Z, Ahammed GJ. 2023. Plant stress response and adaptation via anthocyanins: a review. Plant Stress 10:100230 doi: 10.1016/j.stress.2023.100230 |
[9] |
Speer H, D'Cunha NM, Alexopoulos NI, McKune AJ, Naumovski N. 2020. Anthocyanins and human health—a focus on oxidative stress, inflammation and disease. Antioxidants 9:366 doi: 10.3390/antiox9050366 |
[10] |
Panchal SK, John OD, Mathai ML, Brown L. 2022. Anthocyanins in chronic diseases: the power of purple. Nutrients 14:2161 doi: 10.3390/nu14102161 |
[11] |
Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10:236−42 doi: 10.1016/j.tplants.2005.03.002 |
[12] |
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, et al. 2011. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany 62:2465−83 doi: 10.1093/jxb/erq442 |
[13] |
Naing AH, Kim CK. 2018. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. Plant Molecular Biology 98:1−18 doi: 10.1007/s11103-018-0771-4 |
[14] |
Vogt T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3:2−20 doi: 10.1093/mp/ssp106 |
[15] |
Khan IA, Cao K, Guo J, Li Y, Wang Q, et al. 2022. Identification of key gene networks controlling anthocyanin biosynthesis in peach flower. Plant Science 316:111151 doi: 10.1016/j.plantsci.2021.111151 |
[16] |
Chen L, Hu B, Qin Y, Hu G, Zhao J, et al. 2019. Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors. Plant Physiology and Biochemistry 136:178−87 doi: 10.1016/j.plaphy.2019.01.024 |
[17] |
Naik J, Misra P, Trivedi PK, Pandey A. 2022. Molecular components associated with the regulation of flavonoid biosynthesis. Plant Science 317:111196 doi: 10.1016/j.plantsci.2022.111196 |
[18] |
Rahim MA, Busatto N, Trainotti L. 2014. Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913−29 doi: 10.1007/s00425-014-2078-2 |
[19] |
Gu KD, Wang CK, Hu DG, Hao YJ. 2019. How do anthocyanins paint our horticultural products? Scientia Horticulturae 249:257−62 doi: 10.1016/j.scienta.2019.01.034 |
[20] |
Kayesh E, Shangguan L, Korir NK, Sun X, Bilkish N, et al. 2013. Fruit skin color and the role of anthocyanin. Acta Physiology Plant 35:2879−90 doi: 10.1007/s11738-013-1332-8 |
[21] |
Liu W, Feng Y, Yu S, Fan Z, Li X, et al. 2021. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences 22:12824 doi: 10.3390/ijms222312824 |
[22] |
Yang J, Chen Y, Xiao Z, Shen H, Li Y, et al. 2022. Multilevel regulation of anthocyanin-promoting R2R3-MYB transcription factors in plants. Frontiers in Plant Science 13:1008829 doi: 10.3389/fpls.2022.1008829 |
[23] |
Alabd A, Ahmad M, Zhang X, Gao Y, Peng L, et al. 2022. Light-responsive transcription factor PpWRKY44 induces anthocyanin biosynthesis by regulating PpMYB10 expression in pear. Horticulture Research 9:uhac199 doi: 10.1093/hr/uhac199 |
[24] |
Li C, Wu J, Hu KD, Wei SW, Sun HY, et al. 2020. PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. Horticulture Research 7:37 doi: 10.1038/s41438-020-0254-z |
[25] |
Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, et al. 2017. Advances in the MYB–bHLH–WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant and Cell Physiology 58:1431−41 doi: 10.1093/pcp/pcx075 |
[26] |
Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science 18:477−83 doi: 10.1016/j.tplants.2013.06.003 |
[27] |
Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, et al. 2015. Molecular genetics of blood‐fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal 82:105−21 doi: 10.1111/tpj.12792 |
[28] |
Araguirang GE, Richter AS. 2022. Activation of anthocyanin biosynthesis in high light – what is the initial signal? New Phytologist 236:2037−43 doi: 10.1111/nph.18488 |
[29] |
Liu W, Mei Z, Yu L, Gu T, Li Z, et al. 2023. The ABA-induced NAC transcription factor MdNAC1 interacts with a bZIP-type transcription factor to promote anthocyanin synthesis in red-fleshed apples. Horticulture Research 10:uhad049 doi: 10.1093/hr/uhad049 |
[30] |
Meng J, Sun S, Li A, Pan L, Duan W, et al. 2023. A NAC transcription factor, PpNAC1, regulates the expression of PpMYB10.1 to promote anthocyanin biosynthesis in the leaves of peach trees in autumn. Horticulture Advances 1:8 doi: 10.1007/s44281-023-00012-5 |
[31] |
Li X, Wang X, Zhang Y, Zhang A, You CX. 2022. Regulation of fleshy fruit ripening: from transcription factors to epigenetic modifications. Horticulture Research 9:uhac013 doi: 10.1093/hr/uhac013 |
[32] |
Ma Y, Ma X, Gao X, Wu W, Zhou B. 2021. Light induced regulation pathway of anthocyanin biosynthesis in plants. International Journal of Molecular Sciences 22:11116 doi: 10.3390/ijms222011116 |
[33] |
Amato A, Cavallini E, Walker AR, Pezzotti M, Bliek M, et al. 2019. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. The Plant Journal 99:1220−41 doi: 10.1111/tpj.14419 |
[34] |
Bai S, Tao R, Yin L, Ni J, Yang Q, et al. 2019. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL5 in the peel of pear fruit. The Plant Journal 100:1208−23 doi: 10.1111/tpj.14510 |
[35] |
Sun H, Hu K, Wei S, Yao G, Zhang H. 2023. ETHYLENE RESPONSE FACTORS 4.1/4.2 with an EAR motif repress anthocyanin biosynthesis in red-skinned pears. Plant Physiology 192:1892−912 doi: 10.1093/plphys/kiad068 |
[36] |
Ma D, Constabel CP. 2019. MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends in Plant Science 24:275−89 doi: 10.1016/j.tplants.2018.12.003 |
[37] |
LaFountain AM, Yuan YW. 2021. Repressors of anthocyanin biosynthesis. New Phytologist 231:933−49 doi: 10.1111/nph.17397 |
[38] |
Albert NW, Davies KM, Schwinn KE. 2012. Repression – the dark side of anthocyanin regulation? Acta Horticurae 1048:129−36 doi: 10.17660/ActaHortic.2014.1048.15 |
[39] |
Ramsay NA, Glover BJ. 2005. MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science 10:63−70 doi: 10.1016/j.tplants.2004.12.011 |
[40] |
Zhou H, Lin-Wang K, Wang F, Espley RV, Ren F, et al. 2019. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytologist 221:1919−34 doi: 10.1111/nph.15486 |
[41] |
Ni J, Premathilake AT, Gao Y, Yu W, Tao R, et al. 2021. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit. The Plant Journal 105:167−81 doi: 10.1111/tpj.15049 |
[42] |
Aharoni A, De Vos CHR, Wein M, Sun Z, Greco R, et al. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol biosynthesis in transgenic tobacco. The Plant Journal 28:319−32 doi: 10.1046/j.1365-313X.2001.01154.x |
[43] |
Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, et al. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in Eudicots. The Plant Cell 26:962−80 doi: 10.1105/tpc.113.122069 |
[44] |
Zhang L, Duan Z, Ma S, Sun S, Sun M, et al. 2023. SlMYB7, an AtMYB4-like R2R3-MYB transcription factor, inhibits anthocyanin biosynthesis in Solanum lycopersicum fruits. Journal of Agricultural and Food Chemistry 71:18758−68 doi: 10.1021/acs.jafc.3c05185 |
[45] |
Cao X, Qiu Z, Wang X, Giang TV, Liu X, et al. 2017. A putative R3 MYB repressor is the candidate gene underlying atroviolacium, a locus for anthocyanin pigmentation in tomato fruit. Journal of Experimental Botany 68:5745−58 doi: 10.1093/jxb/erx382 |
[46] |
Yan S, Chen N, Huang Z, Li D, Zhi J, et al. 2020. Anthocyanin Fruit encodes an R2R3‐MYB transcription factor, SlAN2‐like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. New Phytologist 225:2048−63 doi: 10.1111/nph.16272 |
[47] |
Colanero S, Perata P, Gonzali S. 2018. The atroviolacea gene encodes an R3-MYB protein repressing anthocyanin synthesis in tomato plants. Frontiers in Plant Science 9:830 doi: 10.3389/fpls.2018.00830 |
[48] |
An J, Zhang X, Li H, Wang D, You C, et al. 2023. The E3 ubiquitin ligases SINA1 and SINA2 integrate with the protein kinase CIPK20 to regulate the stability of RGL2a, a positive regulator of anthocyanin biosynthesis. New Phytologist 239:1332−52 doi: 10.1111/nph.18997 |
[49] |
Xu H, Yang G, Zhang J, Wang Y, Zhang T, et al. 2018. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus. Biochemical and Biophysical Research Communications 500:405−10 doi: 10.1016/j.bbrc.2018.04.088 |
[50] |
Zhou H, Peng Q, Zhao J, Owiti A, Ren F, et al. 2016. Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin biosynthesis in peach flower. Frontiers in Plant Science 7:1557 doi: 10.3389/fpls.2016.01557 |
[51] |
Cavallini E, Matus JT, Finezzo L, Finezzo L, Zenoni S, et al. 2015. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiology 167:1448−70 doi: 10.1104/pp.114.256172 |
[52] |
Li Y, Shan X, Gao R, Han T, Zhang J, et al. 2020. MYB repressors and MBW activation complex collaborate to fine-tune flower coloration in Freesia hybrida. Communications Biology 3:396 doi: 10.1038/s42003-020-01134-6 |
[53] |
Kim JY, Kim DH, Lee JY, Lim SH. 2022. The R3-Type MYB transcription factor BrMYBL2.1 negatively regulates anthocyanin biosynthesis in Chinese cabbage (Brassica rapa L.) by repressing MYB–bHLH–WD40 complex activity. International Journal of Molecular Sciences 23:3382 doi: 10.3390/ijms23063382 |
[54] |
Hu X, Liang Z, Sun T, Huang L, Wang Y, et al. 2024. The R2R3-MYB transcriptional repressor TgMYB4 negatively regulates anthocyanin biosynthesis in Tulips (Tulipa gesneriana L.). International Journal of Molecular Sciences 25:563 doi: 10.3390/ijms25010563 |
[55] |
Fu X, Liu P, Zheng H, Liu H, Hu X, et al. 2024. DcbHLH1 interacts with DcMYB1 and DcMYB2 to dynamically regulate petal pigmentation in Dianthus caryophyllus. Industrial Crops and Products 207:117606 doi: 10.1016/j.indcrop.2023.117606 |
[56] |
Huang D, Tang Z, Fu J, Yuan Y, Deng X, et al. 2020. CsMYB3 and CsRuby1 form an 'activator-and-repressor' loop for the regulation of anthocyanin biosynthesis in citrus. Plant and Cell Physiology 61:318−30 doi: 10.1093/pcp/pcz198 |
[57] |
Liu Y, Xu S, Tang L, Wang Y, Zhang L, et al. 2024. FaMYB6-like negatively regulates FaMYB10-induced anthocyanin accumulation during strawberry fruit ripening. Postharvest Biology and Technology 212:112891 doi: 10.1016/j.postharvbio.2024.112891 |
[58] |
Causier B, Ashworth M, Guo W, Davies B. 2012. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiology 158:423−38 doi: 10.1104/pp.111.186999 |
[59] |
Wang S, Zhang Z, Li LX, Wang HB, Zhou H, et al. 2022. Apple MdMYB306-like inhibits anthocyanin synthesis by directly interacting with MdMYB17 and MdbHLH33. The Plant Journal 110:1021−34 doi: 10.1111/tpj.15720 |
[60] |
Kagale S, Links MG, Rozwadowski K. 2010. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiology 152:1109−34 doi: 10.1104/pp.109.151704 |
[61] |
Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M. 2003. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. The Plant Journal 34:733−39 doi: 10.1046/j.1365-313X.2003.01759.x |
[62] |
Matsui K, Ohme-Takagi M. 2010. Detection of protein-protein interactions in plants using the transrepressive activity of the EAR motif repression domain. The Plant Journal 61:570−78 doi: 10.1111/j.1365-313X.2009.04081.x |
[63] |
Hussain K, Bhat ZY, Yadav AK, Singh D, Ashraf N. 2023. CstPIF4 integrates temperature and circadian signals and interacts with CstMYB16 to repress anthocyanins in Crocus. Plant and Cell Physiology 64:1407−18 doi: 10.1093/pcp/pcad108 |
[64] |
Tirumalai V, Swetha C, Nair A, Pandit A, Shivaprasad PV. 2019. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol biosynthesis in grapes. Journal of Experimental Botany 70:4775−92 doi: 10.1093/jxb/erz264 |
[65] |
Xu H, Wang N, Liu J, Qu C, Wang Y, et al. 2017. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Molecular Biology 94:149−65 doi: 10.1007/s11103-017-0601-0 |
[66] |
Matsui K, Umemura Y, Ohme-Takagi M. 2008. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal 55:954−67 doi: 10.1111/j.1365-313X.2008.03565.x |
[67] |
Deng GM, Zhang S, Yang QS, Gao HJ, Sheng O, et al. 2020. MaMYB4, an R2R3-MYB repressor transcription factor, negatively regulates the biosynthesis of anthocyanin in banana. Frontiers in Plant Science 11:600704 doi: 10.3389/fpls.2020.600704 |
[68] |
Yoshida K, Ma D, Constabel CP. 2015. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes. Plant Physiology 167:693−710 doi: 10.1104/pp.114.253674 |
[69] |
Causier B, Lloyd J, Stevens L, Davies B. 2012. TOPLESS co-repressor interactions and their evolutionary conservation in plants. Plant Signaling & Behavior 7:325−28 doi: 10.4161/psb.19283 |
[70] |
Kagale S, Rozwadowski K. 2011. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6:141−46 doi: 10.4161/epi.6.2.13627 |
[71] |
Plant AR, Larrieu A, Causier B. 2021. Repressor for hire! The vital roles of TOPLESS-mediated transcriptional repression in plants. New Phytologist 231:963−73 doi: 10.1111/nph.17428 |
[72] |
Long JA, Ohno C, Smith ZR, Meyerowitz EM. 2006. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520−23 doi: 10.1126/science.1123841 |
[73] |
Ni J, Wang S, Yu W, Liao Y, Pan C, et al. 2023. The ethylene-responsive transcription factor PpERF9 represses PpRAP2.4 and PpMYB114 via histone deacetylation to inhibit anthocyanin biosynthesis in pear. The Plant Cell 35:2271−92 doi: 10.1093/plcell/koad077 |
[74] |
Zhou LJ, Wang Y, Wang Y, Song A, Jiang J, et al. 2022. Transcription factor CmbHLH16 regulates petal anthocyanin homeostasis under different lights in Chrysanthemum. Plant Physiology 190:1134−52 doi: 10.1093/plphys/kiac342 |
[75] |
Deng H, Chen Y, Liu Z, Liu Z, Shu P, et al. 2022. SlERF.F12 modulates the transition to ripening in tomato fruit by recruiting the co-repressor Topless and histone deacetylases to repress key ripening genes. The Plant Cell 34:1250−72 doi: 10.1093/plcell/koac025 |
[76] |
Hu Y, Han Z, Wang T, Li H, Li Q, et al. 2022. Ethylene response factor MdERF4 and histone deacetylase MdHDA19 suppress apple fruit ripening through histone deacetylation of ripening related genes. Plant Physiology 188:2166−81 doi: 10.1093/plphys/kiac016 |
[77] |
Jing W, Gong F, Liu G, Deng Y, Liu J, et al. 2023. Petal size is controlled by the MYB73/TPL/HDA19-miR159-CKX6 module regulating cytokinin catabolism in Rosa hybrida. Nature Communications 14:7106 doi: 10.1038/s41467-023-42914-y |
[78] |
Han YC, Kuang JF, Chen JY, Liu XC, Xiao YY, et al. 2016. Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and Expansins during fruit ripening. Plant Physiology 171:1070−84 doi: 10.1104/pp.16.00301 |
[79] |
Lee HG, Seo PJ. 2019. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nature Communications 10:1713 doi: 10.1038/s41467-019-09417-1 |
[80] |
Ryu H, Cho H, Bae W, Hwang I. 2014. Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nature Communications 5:4138 doi: 10.1038/ncomms5138 |
[81] |
Deng X, Cao X. 2017. Roles of pre-mRNA splicing and polyadenylation in plant development. Current Opinion in Plant Biology 35:45−53 doi: 10.1016/j.pbi.2016.11.003 |
[82] |
Wang B, Li W, Xu K, Lei Y, Zhao D, et al. 2023. A splice site mutation in the FvePHP gene is associated with leaf development and flowering time in woodland strawberry. Horticulture Research 10:uhac249 doi: 10.1093/hr/uhac249 |
[83] |
Lam PY, Wang L, Lo C, Zhu FY. 2022. Alternative splicing and its roles in plant metabolism. International Journal of Molecular Sciences 23:7355 doi: 10.3390/ijms23137355 |
[84] |
Xu Y, Zeng A, Song L, Li J, Yan J. 2019. Comparative transcriptomics analysis uncovers alternative splicing events and molecular markers in cabbage (Brassica oleracea L.). Planta 249:1599−615 doi: 10.1007/s00425-019-03108-3 |
[85] |
Cao H, Wu T, Shi L, Yang L, Zhang C. 2023. Alternative splicing control of light and temperature stress responses and its prospects in vegetable crops. Vegetable Research 3:17 doi: 10.48130/vr-2023-0017 |
[86] |
Sun Y, Zhang Q, Liu B, Lin K, Zhang Z, et al. 2020. CuAS: a database of annotated transcripts generated by alternative splicing in cucumbers. BMC Plant Biology 20:119 doi: 10.1186/s12870-020-2312-y |
[87] |
Li Y, Dai C, Hu C, Liu Z, Kang C. 2017. Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry. The Plant Journal 90:164−76 doi: 10.1111/tpj.13462 |
[88] |
Yan X, Bai D, Song H, Lin K, Pang E. 2021. Alternative splicing during fruit development among fleshy fruits. BMC Genomics 22:762 doi: 10.1186/s12864-021-08111-1 |
[89] |
Sablok G, Powell B, Braessler J, Yu F, Min XJ. 2017. Comparative landscape of alternative splicing in fruit plants. Current Plant Biology 9–10:29−36 doi: 10.1016/j.cpb.2017.06.001 |
[90] |
Lev Maor G, Yearim A, Ast G. 2015. The alternative role of DNA methylation in splicing regulation. Trends in Genetics 31:274−80 doi: 10.1016/j.tig.2015.03.002 |
[91] |
Colanero S, Tagliani A, Perata P, Gonzali S. 2019. Alternative splicing in the Anthocyanin fruit gene encoding an R2R3 MYB transcription factor affects anthocyanin biosynthesis in tomato fruits. Plant Communications 1:100006 doi: 10.1016/j.xplc.2019.100006 |
[92] |
Lim SH, Kim DH, Jung JA, Lee JY. 2021. Alternative splicing of the basic Helix-Loop-Helix transcription factor gene CmbHLH2 affects anthocyanin biosynthesis in ray florets of chrysanthemum (Chrysanthemum morifolium). Frontiers in Plant Science 12:669315 doi: 10.3389/fpls.2021.669315 |
[93] |
Yu Y, Zhang Y, Chen X, Chen Y. 2019. Plant noncoding RNAs: hidden players in development and stress responses. Annual Review of Cell and Developmental Biology 35:407−31 doi: 10.1146/annurev-cellbio-100818-125218 |
[94] |
Morita Y, Saito R, Ban Y, Tanikawa N, Kuchitsu K, et al. 2012. Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida. The Plant Journal 70:739−49 doi: 10.1111/j.1365-313X.2012.04908.x |
[95] |
Kadomura-Ishikawa Y, Miyawaki K, Takahashi A, Noji S. 2015. RNAi-mediated silencing and overexpression of the FaMYB1 gene and its effect on anthocyanin accumulation in strawberry fruit. Biologia Plantarum 59:677−85 doi: 10.1007/s10535-015-0548-4 |
[96] |
Chen C, Zeng Z, Liu Z, Xia R. 2018. Small RNAs, emerging regulators critical for the development of horticultural traits. Horticulture Research 5:63 doi: 10.1038/s41438-018-0072-8 |
[97] |
He M, Kong X, Jiang Y, Qu H, Zhu H. 2022. MicroRNAs: emerging regulators in horticultural crops. Trends in Plant Science 27:936−51 doi: 10.1016/j.tplants.2022.03.011 |
[98] |
Wang W, Allan AC, Yin X. 2020. Small RNAs with a big impact on horticultural traits. Critical Reviews in Plant Sciences 39:30−43 doi: 10.1080/07352689.2020.1741923 |
[99] |
Liu H, Shu Q, Lin-Wang K, Allan AC, Espley RV, et al. 2021. The PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10 module regulates light-induced anthocyanin biosynthesis in red pear. Molecular Horticulture 1:14 doi: 10.1186/s43897-021-00018-5 |
[100] |
Jia X, Shen J, Liu H, Li F, Ding N, et al. 2015. Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin biosynthesis in tomato. Planta 242:283−93 doi: 10.1007/s00425-015-2305-5 |
[101] |
Zhang B, Yang HJ, Qu D, Zhu ZZ, Yang YZ, et al. 2022. The MdBBX22–miR858–MdMYB9/11/12 module regulates proanthocyanidin biosynthesis in apple peel. Plant Biotechnology Journal 20:1683−700 doi: 10.1111/pbi.13839 |
[102] |
Wang W, Moss SMA, Zeng L, Espley RV, Wang T, et al. 2022. The red flesh of kiwifruit is differentially controlled by specific activation–repression systems. New Phytologist 235:630−45 doi: 10.1111/nph.18122 |
[103] |
Wang W, Wang Y, Chen T, Qin G, Tian S. 2023. Current insights into posttranscriptional regulation of fleshy fruit ripening. Plant Physiology 192:1785−98 doi: 10.1093/plphys/kiac483 |
[104] |
Tang Y, Qu Z, Lei J, He R, Adelson DL, et al. 2021. The long noncoding RNA FRILAIR regulates strawberry fruit ripening by functioning as a noncanonical target mimic. PLoS Genetics 17:e1009461 doi: 10.1371/journal.pgen.1009461 |
[105] |
Yu J, Qiu K, Sun W, Yang T, Wu T, et al. 2022. A long noncoding RNA functions in high-light-induced anthocyanin biosynthesis in apple by activating ethylene synthesis. Plant Physiology 189:66−83 doi: 10.1093/plphys/kiac049 |
[106] |
Ma H, Yang T, Li Y, Zhang J, Wu T, et al. 2021. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin biosynthesis in apple fruit. The Plant Cell 33:3309−30 doi: 10.1093/plcell/koab188 |
[107] |
Tan H, Luo X, Lu J, Wu L, Li Y, et al. 2023. The long noncoding RNA LINC15957 regulates anthocyanin biosynthesis in radish. Frontiers in Plant Science 14:1139143 doi: 10.3389/fpls.2023.1139143 |
[108] |
Litholdo CG Jr, da Fonseca GC. 2018. Circular RNAs and plant stress responses. In Circular RNAs, ed. Xiao J. Singapore: Springer. Vol 1087. pp. 345−53. doi: 10.1007/978-981-13-1426-1_27 |
[109] |
Wang Z, Liu Y, Li D, Li L, Zhang Q, et al. 2017. Identification of circular RNAs in kiwifruit and their species-specific response to bacterial canker pathogen invasion. Frontiers in Plant Science 8:413 doi: 10.3389/fpls.2017.00413 |
[110] |
Wang D, Gao Y, Sun S, Li L, Wang K. 2022. Expression characteristics in roots, phloem, leaves, flowers and fruits of apple circRNA. Genes 13:712 doi: 10.3390/genes13040712 |
[111] |
Gao Z, Li J, Luo M, Li H, Chen Q, et al. 2019. Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1. Plant Physiology 180:966−85 doi: 10.1104/pp.18.01331 |
[112] |
Yang X, Liu Y, Zhang H, Wang J, Zinta G, et al. 2020. Genome-wide identification of circular RNAs in response to low-temperature stress in tomato leaves. Frontiers in Genetics 11:591806 doi: 10.3389/fgene.2020.591806 |
[113] |
Yin J, Liu M, Ma D, Wu J, Li S, et al. 2018. Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biology and Technology 136:90−98 doi: 10.1016/j.postharvbio.2017.10.013 |
[114] |
Li X, Ma Z, Song Y, Shen W, Yue Q, et al. 2023. Insights into the molecular mechanisms underlying responses of apple trees to abiotic stresses. Horticulture Research 10:uhad144 doi: 10.1093/hr/uhad144 |
[115] |
Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK. 2016. Role of ubiquitin-mediated degradation system in plant biology. Frontiers in Plant Science 7:806 doi: 10.3389/fpls.2016.00806 |
[116] |
Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, et al. 2012. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology 160:1011−22 doi: 10.1104/pp.112.199703 |
[117] |
An J, Liu X, Li H, You C, Wang X, et al. 2017. Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein. Plant and Cell Physiology 58:1953−62 doi: 10.1093/pcp/pcx129 |
[118] |
An J, Wang X, Zhang X, Xu H, Bi S, et al. 2020. An apple MYB transcription factor regulates cold tolerance and anthocyanin biosynthesis and undergoes MIEL1‐mediated degradation. Plant Biotechnology Journal 18:337−53 doi: 10.1111/pbi.13201 |
[119] |
Tao R, Yu W, Gao Y, Ni J, Yin L, et al. 2020. Light-induced basic/helix-loop-helix64 enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-mediated degradation in pear. Plant Physiology 184:1684−701 doi: 10.1104/pp.20.01188 |
[120] |
An J, Li H, Liu Z, Wang D, You C, et al. 2023. The E3 ubiquitin ligase SINA1 and the protein kinase BIN2 cooperatively regulate PHR1 in apple anthocyanin biosynthesis. Journal of Integrative Plant Biology 65:2175−93 doi: 10.1111/jipb.13538 |
[121] |
Figueroa P, Gusmaroli G, Serino G, Habashi J, Ma L, et al. 2005. Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. The Plant Cell 17:1180−95 doi: 10.1105/tpc.105.031989 |
[122] |
An J, Zhang X, You C, Bi S, Wang X, et al. 2019. MdWRKY40 promotes wounding‐induced anthocyanin biosynthesis in association with MdMYB1 and undergoes MdBT2‐mediated degradation. New Phytologist 224:380−95 doi: 10.1111/nph.16008 |
[123] |
An J, An X, Yao J, Wang X, You C, et al. 2018. BTB protein MdBT2 inhibits anthocyanin and proanthocyanidin biosynthesis by triggering MdMYB9 degradation in apple. Tree Physiology 38:1578−87 doi: 10.1093/treephys/tpy063 |
[124] |
An J, Wang X, Zhang X, Bi S, You C, et al. 2019. MdBBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. Plant Biotechnology Journal 17:2231−33 doi: 10.1111/pbi.13196 |
[125] |
Wang X, An J, Liu X, Su L, You C, et al. 2018. The nitrate-responsive protein MdBT2 regulates anthocyanin biosynthesis by interacting with the MdMYB1 transcription factor. Plant Physiology 178:890−906 doi: 10.1104/pp.18.00244 |
[126] |
An J, Liu Y, Zhang X, Bi S, Wang X, et al. 2020. Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple. Journal of Experimental Botany 71:3094−109 doi: 10.1093/jxb/eraa056 |
[127] |
An J, Yao J, Xu R, You C, Wang X, et al. 2018. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin biosynthesis. Plant, Cell & Environment 41:2678−92 doi: 10.1111/pce.13393 |
[128] |
An J, Zhang X, Bi S, You C, Wang X, et al. 2020. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. The Plant Journal 101:573−89 doi: 10.1111/tpj.14555 |
[129] |
Luo D, Xiong C, Lin A, Zhang C, Sun W, et al. 2021. SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2 to regulate anthocyanin biosynthesis by activating SlDFR expression in tomato. Horticulture Research 8:163 doi: 10.1038/s41438-021-00595-y |
[130] |
Zhang L, Wang L, Gao Y, Yang S, Ni J, et al. 2024. Phosphorylated transcription factor PuHB40 is involved in ROS-dependent anthocyanin biosynthesis in pear exposed to high-light stress. BioRxiv 12:145−46 doi: 10.1101/2023.12.22.573105 |
[131] |
Mao W, Han Y, Chen Y, Sun M, Feng Q, et al. 2022. Low temperature inhibits anthocyanin biosynthesis in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. The Plant Cell 34:1226−49 doi: 10.1093/plcell/koac006 |
[132] |
Broucke E, Dang TTV, Li Y, Hulsmans S, Van Leene J, et al. 2023. SnRK1 inhibits anthocyanin biosynthesis through both transcriptional regulation and direct phosphorylation and dissociation of the MYB/bHLH/TTG1 MBW complex. The Plant Journal 115:1193−213 doi: 10.1111/tpj.16312 |
[133] |
Yang T, Ma H, Li Y, Zhang Y, Zhang J, et al. 2021. Apple MPK4 mediates phosphorylation of MYB1 to enhance light-induced anthocyanin biosynthesis. The Plant Journal 106:1728−45 doi: 10.1111/tpj.15267 |
[134] |
Xing Y, Sun W, Sun, Y, Li J, Zhang J, et al. 2023. MPK6-mediated HY5 phosphorylation regulates light-induced anthocyanin biosynthesis in apple fruit. Plant Biotechnology Journal 21:283−301 doi: 10.1111/pbi.13941 |
[135] |
Hu D, Sun C, Zhang Q, An J, You C, et al. 2016. Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genetics 12:e1006273 doi: 10.1371/journal.pgen.1006273 |
[136] |
Khan RA, Abbas N. 2023. Role of epigenetic and post-translational modifications in anthocyanin biosynthesis: a review. Gene 887:147694 doi: 10.1016/j.gene.2023.147694 |
[137] |
Park HJ, Kim WY, Park HC, Lee SY, Bohnert HJ, et al. 2011. SUMO and SUMOylation in plants. Molecules and Cells 32:305−16 doi: 10.1007/s10059-011-0122-7 |
[138] |
Han D, Lai J, Yang C. 2011. SUMOylation: a critical transcription modulator in plant cells. Plant Science 310:110987 doi: 10.1016/j.plantsci.2021.110987 |
[139] |
Zhou L, Li Y, Zhang R, Zhang C, Xie X, et al. 2017. The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin biosynthesis by sumoylating MdMYB1 under low-temperature conditions in apple. Plant, Cell & Environment 40:2068−80 doi: 10.1111/pce.12978 |
[140] |
Jiang H, Zhou L, Gao H, Wang X, Li Z, et al. 2022. The transcription factor MdMYB2 influences cold tolerance and anthocyanin biosynthesis by activating SUMO E3 ligase MdSIZ1 in apple. Plant Physiology 189:2044−60 doi: 10.1093/plphys/kiac211 |
[141] |
Zheng T, Li Y, Lei W, Qiao K, Liu B, et al. 2020. SUMO E3 Ligase SIZ1 stabilizes MYB75 to regulate anthocyanin biosynthesis under high light conditions in Arabidopsis. Plant Science 292:110355 doi: 10.1016/j.plantsci.2019.110355 |
[142] |
Yao G, Gou S, Zhong T, Wei S, An X, et al. 2023. Persulfidation of transcription factor MYB10 inhibits anthocyanin synthesis in red-skinned pear. Plant Physiology 192:2185−202 doi: 10.1093/plphys/kiad100 |
[143] |
Nie W. 2021. DNA methylation: from model plants to vegetable crops. Biochemical Society Transactions 49:1479−87 doi: 10.1042/BST20210353 |
[144] |
Telias A, Lin-Wang K, Stevenson DE, Cooney JM, Hellens RP, et al. 2011. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology 11:93 doi: 10.1186/1471-2229-11-93 |
[145] |
Zhang H, Lang Z, Zhu JK. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology 19:489−506 doi: 10.1038/s41580-018-0016-z |
[146] |
Chen Y, Li D, Lang Z, Xu Y, Luo Z. 2024. An emerging role beyond genetics: DNA methylation in horticultural quality shaping. The Innovation Life 2:100050 doi: 10.59717/j.xinn-life.2024.100050 |
[147] |
Wang Q, Wang Y, Sun H, Sun L, Zhang L. 2020. Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin biosynthesis in red-fleshed radish. Journal of Experimental Botany 71:2537−50 doi: 10.1093/jxb/eraa010 |
[148] |
El-Sharkawy I, Liang D, Xu K. 2015. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. Journal of Experimental Botany 66:7359−76 doi: 10.1093/jxb/erv433 |
[149] |
Ma C, Jing C, Chang B, Ya J, Liang B, et al. 2018. The effect of promoter methylation on MdMYB1 expression determines the level of anthocyanin biosynthesis in skins of two non-red apple cultivars. BMC Plant Biology 18:108 doi: 10.1186/s12870-018-1320-7 |
[150] |
Bai S, Tuan PA, Saito T, Honda C, Hatsuyama Y, et al. 2016. Epigenetic regulation of MdMYB1 is associated with paper bagging-induced red pigmentation of apples. Planta 244:573−86 doi: 10.1007/s00425-016-2524-4 |
[151] |
Peng Z, Tian J, Luo R, Kang Y, Lu Y, et al. 2020. MiR399d and epigenetic modification comodulate anthocyanin accumulation in Malus leaves suffering from phosphorus deficiency. Plant, Cell & Environment 43:1148−59 doi: 10.1111/pce.13697 |
[152] |
Wang Z, Meng D, Wang A, Li T, Jiang S, et al. 2013. The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiology 162:885−96 doi: 10.1104/pp.113.214700 |
[153] |
Qian M, Sun Y, Allan AC, Teng Y, Zhang D. 2014. The red sport of 'Zaosu' pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter. Phytochemistry 107:16−23 doi: 10.1016/j.phytochem.2014.08.001 |
[154] |
Liu H, Shu Q, Lin-Wang K, Espley RV, Allan AC, et al. 2023. DNA methylation reprogramming provides insights into light-induced anthocyanin biosynthesis in red pear. Plant Science 326:111499 doi: 10.1016/j.plantsci.2022.111499 |
[155] |
Xia H, Shen Y, Hu R, Wang J, Deng H, et al. 2021. Methylation of MYBA1 is associated with the coloration in 'Manicure Finger' grape skin. Journal of Agricultural and Food Chemistry 69:15649−59 doi: 10.1021/acs.jafc.1c04550 |
[156] |
Sicilia A, Scialò E, Puglisi I, Lo Piero AR. 2020. Anthocyanin biosynthesis and DNA methylation dynamics in sweet orange fruit [Citrus sinensis L. (Osbeck)] under cold stress. Journal of Agricultural and Food Chemistry 68:7024−31 doi: 10.1021/acs.jafc.0c02360 |
[157] |
Zhu C, Zhang B, Allan AC, Lin-Wang K, Zhao Y, et al. 2020. DNA demethylation is involved in the regulation of temperature-dependent anthocyanin biosynthesis in peach. The Plant Journal 102:965−76 doi: 10.1111/tpj.14680 |
[158] |
Cheng J, Niu Q, Zhang B, Chen K, Yang R, et al. 2018. Downregulation of RdDM during strawberry fruit ripening. Genome Biology 19:212 doi: 10.1186/s13059-018-1587-x |
[159] |
Liu X, Xiang L, Yin X, Grierson D, Li F, et al. 2015. The identification of a MYB transcription factor controlling anthocyanin biosynthesis regulation in Chrysanthemum flowers. Scientia Horticulturae 194:278−85 doi: 10.1016/j.scienta.2015.08.018 |
[160] |
Tang M, Xue W, Li X, Wang L, Wang M, et al. 2022. Mitotically heritable epigenetic modifications of CmMYB6 control anthocyanin biosynthesis in chrysanthemum. New Phytologist 236:1075−88 doi: 10.1111/nph.18389 |